• Title/Summary/Keyword: coefficient optimization algorithm

Search Result 150, Processing Time 0.028 seconds

Optimization of a horizontal axis marine current turbine via surrogate models

  • Thandayutham, Karthikeyan;Avital, E.J.;Venkatesan, Nithya;Samad, Abdus
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.111-133
    • /
    • 2019
  • Flow through a scaled horizontal axis marine current turbine was numerically simulated after validation and the turbine design was optimized. The computational fluid dynamics (CFD) code Ansys-CFX 16.1 for numerical modeling, an in-house blade element momentum (BEM) code for analytical modeling and an in-house surrogate-based optimization (SBO) code were used to find an optimal turbine design. The blade-pitch angle (${\theta}$) and the number of rotor blades (NR) were taken as design variables. A single objective optimization approach was utilized in the present work. The defined objective function was the turbine's power coefficient ($C_P$). A $3{\times}3$ full-factorial sampling technique was used to define the sample space. This sampling technique gave different turbine designs, which were further evaluated for the objective function by solving the Reynolds-Averaged Navier-Stokes equations (RANS). Finally, the SBO technique with search algorithm produced an optimal design. It is found that the optimal design has improved the objective function by 26.5%. This article presents the solution approach, analysis of the turbine flow field and the predictability of various surrogate based techniques.

A Range-Based Monte Carlo Box Algorithm for Mobile Nodes Localization in WSNs

  • Li, Dan;Wen, Xianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3889-3903
    • /
    • 2017
  • Fast and accurate localization of randomly deployed nodes is required by many applications in wireless sensor networks (WSNs). However, mobile nodes localization in WSNs is more difficult than static nodes localization since the nodes mobility brings more data. In this paper, we propose a Range-based Monte Carlo Box (RMCB) algorithm, which builds upon the Monte Carlo Localization Boxed (MCB) algorithm to improve the localization accuracy. This algorithm utilizes Received Signal Strength Indication (RSSI) ranging technique to build a sample box and adds a preset error coefficient in sampling and filtering phase to increase the success rate of sampling and accuracy of valid samples. Moreover, simplified Particle Swarm Optimization (sPSO) algorithm is introduced to generate new samples and avoid constantly repeated sampling and filtering process. Simulation results denote that our proposed RMCB algorithm can reduce the location error by 24%, 14% and 14% on average compared to MCB, Range-based Monte Carlo Localization (RMCL) and RSSI Motion Prediction MCB (RMMCB) algorithm respectively and are suitable for high precision required positioning scenes.

An Area Optimization Method for Digital Filter Design

  • Yoon, Sang-Hun;Chong, Jong-Wha;Lin, Chi-Ho
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.545-554
    • /
    • 2004
  • In this paper, we propose an efficient design method for area optimization in a digital filter. The conventional methods to reduce the number of adders in a filter have the problem of a long critical path delay caused by the deep logic depth of the filter due to adder sharing. Furthermore, there is such a disadvantage that they use the transposed direct form (TDF) filter which needs more registers than those of the direct form (DF) filter. In this paper, we present a hybrid structure of a TDF and DF based on the flattened coefficients method so that it can reduce the number of flip-flops and full-adders without additional critical path delay. We also propose a resource sharing method and sharing-pattern searching algorithm to reduce the number of adders without deepening the logic depth. Simulation results show that the proposed structure can save the number of adders and registers by 22 and 26%, respectively, compared to the best one used in the past.

  • PDF

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method (DNA 코딩 기법을 이용한 웨이브렛 기반 퍼지 모델링)

  • Lee, Yeun-Woo;Yu, Jin-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2040-2042
    • /
    • 2003
  • In this paper, we propose a new method about wavelet-based fuzzy modeling using a DNA coding method. DNA coding techniques is known that expression of knowledge is various than Genetic Algorithm(GA) usually by made optimization technique because done base in structure of biologic DNA and optimization performance is superior. The reposed method make fuzzy system model in wavelet transform and equivalence relation after identification with coefficient of wavelet transform using a DNA coding techniques. Also, can get fuzzy model effectively of nonlinear system using advantage of strong wavelet transform about function that have sudden change. In this paper, in order to demonstrate the superiority of the proposed method compared with GA.

  • PDF

Penalized-Likelihood Image Reconstruction for Transmission Tomography Using Spline Regularizers (스플라인 정칙자를 사용한 투과 단층촬영을 위한 벌점우도 영상재구성)

  • Jung, J.E.;Lee, S.-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.211-220
    • /
    • 2015
  • Recently, model-based iterative reconstruction (MBIR) has played an important role in transmission tomography by significantly improving the quality of reconstructed images for low-dose scans. MBIR is based on the penalized-likelihood (PL) approach, where the penalty term (also known as the regularizer) stabilizes the unstable likelihood term, thereby suppressing the noise. In this work we further improve MBIR by using a more expressive regularizer which can restore the underlying image more accurately. Here we used a spline regularizer derived from a linear combination of the two-dimensional splines with first- and second-order spatial derivatives and applied it to a non-quadratic convex penalty function. To derive a PL algorithm with the spline regularizer, we used a separable paraboloidal surrogates algorithm for convex optimization. The experimental results demonstrate that our regularization method improves reconstruction accuracy in terms of both regional percentage error and contrast recovery coefficient by restoring smooth edges as well as sharp edges more accurately.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge (항공기 날개 앞전의 레이더흡수구조 최적화)

  • Jang, Byung-Wook;Park, Sun-Hwa;Lee, Won-Jun;Joo, Young-Sik;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, objective functions are defined for optimization of radar absorbing structures (RAS) on the aircraft wing leading edge. RAS is regarded as a single layer structure made of dielectrics. Design variables are the real and imaginary parts of complex permittivity. Reflection coefficient(RC) and radar cross section(RCS) are used in the objective function respectively. Transmission line theory is employed to calculate the RC. The RCS is evaluated by using physical optics(PO) for a leading edge part model. Genetic algorithm(GA) is used to perform optimization procedures. The radar absorbing performance of designed RAS is assessed by the RCS of a wing which has RAS on the leading edge.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

Design of Supersonic Impulse Turbine Nozzle with Asymmetric Configuration using the Optimal Method (최적화기법을 이용한 초음속 충동형 터빈 노즐의 비대칭 설계)

  • Jeong, Soo-In;Choi, Byoung-Ik;Jeong, Eun-Hwan;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.61-65
    • /
    • 2011
  • In this paper, the nozzle design with asymmetric configuration using the optimal method is used in order to improve the under- and over-expansion problem of the flow at the supersonic turbine nozzle. For the design of nozzle contour, 8 design variables are selected and the total-to-static efficiency from the nozzle inlet to the wake outlet is considered as the objective function to be maximized. The Fluent6.3 and the iSIGHT-FD program are used for calculation of nozzle flow and design optimization respectively. RBF(Radial Basis Function) method is chosen for approximate optimization algorithm. It is shown that the static efficiency of improved nozzle design increases 1.35% and loss coefficient decreases 19.85% as compared to baseline design.

  • PDF

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.