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Abstract 
 

Fast and accurate localization of randomly deployed nodes is required by many applications in 

wireless sensor networks (WSNs). However, mobile nodes localization in WSNs is more 

difficult than static nodes localization since the nodes mobility brings more data. In this paper, 

we propose a Range-based Monte Carlo Box (RMCB) algorithm, which builds upon the 
Monte Carlo Localization Boxed (MCB) algorithm to improve the localization accuracy. This 

algorithm utilizes Received Signal Strength Indication (RSSI) ranging technique to build a 

sample box and adds a preset error coefficient in sampling and filtering phase to increase the 
success rate of sampling and accuracy of valid samples. Moreover, simplified Particle Swarm 

Optimization (sPSO) algorithm is introduced to generate new samples and avoid constantly 

repeated sampling and filtering process. Simulation results denote that our proposed RMCB 
algorithm can reduce the location error by 24%, 14% and 14% on average compared to MCB, 

Range-based Monte Carlo Localization (RMCL) and RSSI Motion Prediction MCB 

(RMMCB) algorithm respectively and are suitable for high precision required positioning 

scenes. 
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1. Introduction 

Wireless sensor networks (WSNs) are kind of networks with distributed autonomous nodes 

that can sense their environment cooperatively which have been used in a wide range of 

applications in recent years such as military target tracking and surveillance, medical 
treatments, hazardous environment exploration, the monitoring of animal activity and so on. 

However, the basic assumption of these applications is that all nodes in WSNs know their own 

location because without location information all the other information would be meaningless. 

Therefore, node localization algorithms in WSNs have important theoretical and practical 
significance. 

Localization methods in WSNs can be roughly divided into two types: range-based and 

range-free. The range-based algorithms use some ranging techniques such as Time of Arrival 
[1] (TOA), Angle of Arrival [2] (AOA), Time Difference of Arrival [3] (TDOA) and Received 

Signal Strength Indication [4] (RSSI) to measure distances or angles between target nodes and 

their neighboring anchors. Moreover, it provides more precise localization results than the 
range-free algorithms, which only use the connectivity between sensor nodes without any 

ranging techniques to estimate the locations of unknown nodes. The typical range-free 

algorithms mainly include the Centroid [5], the convex position estimation [6] (CPE), the 

approximate point in triangulation [7] (APIT), the distance vector-hop [8] (DV-hop) and the 
multidimensional scaling-MAP [9] (MDS-MAP). In particular, the MDS-MAP generates the 

most accurate positioning results among range-free algorithms. However, this algorithm has a 

computational overhead of O(n
3
) in a network of n nodes and not suitable for large-scale 

WSNs. It also yields significantly larger localization error if there are holes in the sensor field. 

Therefore, Shon, et al proposed a cluster-based MDS [10] (CMDS) that overcomes the above 

shortcomings and yields smaller localization error in all environments even with holes. 

A wide variety of localization algorithms have been proposed in static WSNs, which 
provide good performance. However, the growing interest in mobile devices and the 

emergence of new applications such as mobile targets tracking and monitoring in mobile 

environments require us to develop new localization methods. To improve the accuracy of 
mobile targets tracking, some estimation and prediction algorithms such as Bayesian [11] and 

Kalman filtering [12-13] have been proposed by scholars. However, these methods bring 

complicated calculation and increasing overhead of information transmission. Tran-Quang, et 
al [14] proposed a collaborative data processing and dynamic clustering method, combining 

with the Lateration-localizing algorithm to solve the mobile target tracking problem. It 

achieved good balance of energy consumption, delay, accuracy and improved the 

practicability of mobile target tracking method. 
    Mobile nodes localization in WSNs is more difficult than static nodes localization since the 

nodes mobility brings more data. The information of neighboring anchors for each node and 

the topology of the whole network change over time. Although static nodes localization 
algorithms in WSNs can be extended to mobile nodes localization problems, they will 

generate high communication and computation costs, thus bringing more energy consumption. 

Nevertheless, the positioning accuracy is not satisfactory. In order to improve the positioning 
precision by exploiting the mobility of sensor nodes, Hu and Evans [15] applied the sequential 

Monte Carlo (SMC) method to the mobile nodes localization in WSNs for the first time. Their 

algorithm which is named Monte Carlo Localization (MCL) divided the time into discrete 

intervals. The location of mobile nodes had to be constantly updated in each time interval by 
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rerunning the algorithm. This algorithm includes two phases: prediction phase and filtering 

phase. Firstly, each target node randomly draws a set of samples in the sampling area to 
represent its possible locations in the prediction phase. Secondly, invalid samples which are 

not inside the transmission range of anchor nodes are filtered out in the filtering phase. Finally, 

the estimated location of the target node is the average of all valid samples. Although the MCL 

algorithm has disadvantages such as the localization error with low anchor density is large, it 
provides a new way to solve the localization problem in mobile WSNs. 

From then on, more and more scholars developed their own improved scheme on the basis 

of the MCL algorithm. Baggio and Langendoen [16] proposed the Monte Carlo Localization 
Boxed (MCB) algorithm which built upon the MCL algorithm to improve the success rate of 

sampling by defining an anchor box and sample box. Different from the MCL algorithm using 

information about one-hop/two-hop anchors in the filtering phase only, the MCB algorithm 
applied the anchor information to constrain the area from which the samples are drawn in the 

prediction phase also. The Mobile and Static sensor network Localization (MSL) and the 

MSL* algorithms proposed in [17] were faster in converge and sampling procedure than the 

MCL algorithm. They improved the localization accuracy by using the estimated location of 
all neighboring nodes (not only neighboring anchors). Since the algorithms generate more 

communication and computation costs, they are more suitable for sensors that can support 

extra communication. A distributed Improved Monte Carlo Localization [18] (IMCL) scheme 
was proposed to improve the localization accuracy by adding neighboring constraint and 

moving direction constraint which is suitable for application on the resource-limited sensor 

nodes. The above algorithms are all range-free and do not meet the requirement of high 

precision positioning. Literature [19] presented a Range-based Monte Carlo Localization 
(RMCL) algorithm which improved the localization accuracy and efficiency by introducing 

the RSSI ranging technique to restrict the sampling area. A new filtering method in [20] which 

divided the transmission range into n evenly spaced concentric circles strengthened the filter 
conditions. An overview of the localization algorithms in mobile WSNs was proposed in [21] 

which researched the principles and characteristics of existing work in this field and classified 

the important algorithms proposed recently. Moreover, it pointed out the future directions and 
challenges of the localization problem in mobile WSNs. 

The remaining part of this paper is organized as follows. The next section briefly introduces 

some related works. In section 3, we propose our Range-based Monte Carlo Box (RMCB) 

algorithm for nodes localization in mobile WSNs. Simulation experiments and results analysis 
are presented in section 4. Section 5 concludes this paper and points out the future work that 

lies ahead. 

2. Related Work 

2.1 RSSI Ranging Model 

While the anchor node moves in the sensing field, it can broadcast its position and the RSSI 

value to any other node within its transmission range since it has a radio frequency chip and 
needs no additional hardware. The RSSI value increases when the anchor node comes close 

and decreases when the anchor node moves away. Multi-path, obstacles, diffraction and other 

factors make the transmission model in actual application environments very complicated. In 
this paper, we use a logarithmic normal distribution model [22] and the RSSI value at a 

distance d from the transmitter is given by formula (1). 
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where PT is the transmission power, PL(d0) is the path loss at a reference distance d0 and α is the 
path loss exponent. The random variation in RSSI is modeled as a Gaussian random variable 

Xσ = N(0, σ
2
). The values of α and σ can be set differently depending on the actual propagation 

environment. 

2.2 Monte Carlo Localization Boxed (MCB) Algorithm 

Let’s briefly introduce the MCB algorithm [16] which includes two phases: the prediction 

phase and the filtering phase. Firstly, each target node randomly draws a set of samples in the 
sample box (sometimes is anchor box) to represent its possible locations in the prediction 

phase. Secondly, invalid samples, which are not inside the transmission range of anchor nodes 

are filtered out in the filtering phase. Finally, the estimated location of the target node is the 
average of all valid samples. The specific process of the MCB algorithm is as follows. 

Initialiaztion: At the beginning, a node has no knowledge of its location. N is a constant that 

denotes the maximum number of samples to maintain in a set. L0 is the initial set of samples, 
Box0 is the initial anchor box, O0 is the initial set of observations, xrange and yrange are the 

maximum x and y coordinates of the deployment area, respectively. 

 

if O0=ϕ then 
Box0={(0, xrange); (0, yrange)} 
L0={ l

0 

0 , l
1 

0 ,…, l
N 

0 }                                            //Set of N random locations in deployment area 

else 
Box0={(xmin, xmax); (ymin, ymax)}         //Anchor box built from one-hop and two-hop anchors 

    L0={ l
0 

0 , l
1 

0 ,…, l
N 

0 } //Set of N random locations within the anchor box Box0 filtered with O0 

Fi 
 

Step: Compute a new possible location set Lt based on both Lt-1, the set of possible locations 

from the previous time step t-1 and the new observations Ot, the position information obtained 

from both the one-hop and two-hop anchors between time t-1 and time t.  
 

if Ot=ϕ then Boxt={(0, xrange); (0, yrange)} 

else Boxt={(xmin, xmax); (ymin, ymax)}                                                                    //Anchor box building 
fi 

Lt=ϕ 
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Anchor box building:  

Boxt={(xmin, xmax); (ymin, ymax)} with (xj , yj) being the coordinates of the considered anchor j and 
n being the total number of anchors heard. We replace r by 2r in the following formulas when 

using the two-hop anchors: 
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max; 0 otherwise, assumes a node is equally likely to move 

in any direction with any speed between 0 and vmax within Box
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 t . 

 

Filtering:  

p(ot|l
 i 

 t )=1 if sS, d(lt, s) ≤r ˄ sT, r<d(lt, s)≤2r; 0 otherwise, where r is the radio range, S is 

the set of one-hop anchors and T is the set of two-hop anchors, d(lt, s) is the Euclidean distance 

between the anchor s and the sample lt. 

3. Range-based Monte Carlo Box (RMCB) Algorithm 

In this section, a Range-based Monte Carlo Box (RMCB) algorithm, which builds upon the 
MCB algorithm, is proposed. Although the MCB algorithm has reached a certain precision 

requirements, its localization result is not as accuracy as those range-based methods. However, 

those algorithms only use ranging methods such as RSSI also have the following problems: (1) 
One target node needs at least three anchor nodes that are expensive within its transmission 

range to localize itself. It is difficult to meet the requirement of quantity. (2) Even if the anchor 

node number is enough, it is possible that the RSSI value cannot be received resulting in the 

failure of localization due to obstructions. Our proposed algorithm combines the ranging 
method with range-free MCB method to solve the above problems. It not only improved the 

precision of MCB algorithm, but also relaxed the requirement of anchor node number. The 

specific content of our algorithm is described in the following five subsections. 

3.1 Sampling Phase 

The method used for constraining the area from which we draws samples is as follows. A 
target node that has heard anchors (one-hop or two-hop anchors) builds a box that covers the 

region where the anchors’ transmission ranges overlap. In other words, this box is the region 

of the deployment area where the node is localized. We call such a box an anchor box [16]. 

When building the anchor box, the original MCB algorithm uses the transmission range R/2R 
for one-hop/two-hop anchors. In our RMCB algorithm, the RSSI value are utilized to estimate 

the distances between the target node and its one-hop/two-hop anchors.  
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Fig. 1 shows the method of building an anchor box based on RSSI. The shaded area in this 

figure denotes the range of the anchor box. 

 
Fig. 1. Anchor box based on RSSI and preset error coefficient 

 

The range of the anchor box can be expressed as ([xmin, xmax], [ymin, ymax]). The value of xmin, 

xmax, ymin, ymax is calculated by formula (2) and (3). 
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Where M is the number of anchor nodes, (xj, yj) denotes the coordinate of anchor Aj 
(j=1,2,…,M), R is the transmission range, dj is the measure distance to a one-hop anchor by 

RSSI, Dj is the approximate distance to a two-hop anchor (distance to a one-hop node plus 

distance from a one-hop node to a two-hop anchor). δ is a preset error coefficient since the 
RSSI ranging model has a certain degree of error. 

The sample box is built with an additional constraint: for each old sample l
 i 

t-1 from the 

sample set Lt-1, an additional square of size 2*vmax centered at the old sample is added.  

Fig. 2 shows the method of building a sample box. The shaded area in this figure denotes the 
range of the sample box. 

 

 

 
Fig. 2. Sample box 
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The range of the sample box in t moment for the old sample l
 i 

t-1 with coordinates (x
i 

t-1, y
i 

t-1) can 

be expressed as ([xmin, xmax], [ymin, ymax]) (i=1, 2,…, N). The value of x
i 

min, x
i 

max, y
i 

min, y
i 

max is 

calculated by formula (4) and (5). 
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Where N is the sample number and vmax is the maximum velocity of all mobile nodes. In 

particular, when there is no old sample set (like the initial time) or no overlap between the 

anchor box and the area per old sample can move in one time interval at maximum, the anchor 
box is directly considered as the sample box. When a node has an old sample set but can hear 

no anchor, we build the sample box only based on the node maximum velocity and the 

positions of old samples. 

3.2 Filtering Phase 

The purpose of the filtering phase is to remove the impossible samples from the sample set. 

The original MCB algorithm uses the transmission range R/2R for one-hop/two-hop anchors 
as the filter condition. In our RMCB algorithm, the RSSI value are employed to form the new 

filter condition.  

Fig. 3 shows the new filter condition in our proposed algorithm. The shaded area in this 
figure denotes the effective sample area. In this figure, the target node has two one-hop 

anchors A1 and A2 which distance measured by RSSI between itself and the target node is d1 

and d2 respectively. Since the RSSI ranging model has a certain degree of error, we designed a 

preset error coefficient δ to limit the range of error which can be expressed as (1-δ)*d1/d2 to 
min((1+δ)*d1/d2, R).  

 
 

Fig. 3. Filter condition 

 

For two-hop anchors, the distance between itself and the target node is the sum of two 

one-hop distance measured by RSSI and always larger than the actual distance. Therefore, the 

filter condition for two-hop anchors is not as strict as for one-hop anchors. The specific 
condition in the filtering phase is shown in formula (6). 
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Where S is the set of one-hop anchors and T is the set of two-hop anchors, d(l

 i 

 t , sj) is the 
Euclidean distance between the sample l

 i 

 t  and the anchor sj, rj is defined in formula (3). 

3.3 Generating New Samples 

Because of the strict sampling and filtering process, the quality of samples is much higher than 
before. However, the sample number is hard to meet the requirement. Constantly repeated 

sampling and filtering will increase time cost and energy consumption. Here we introduce the 

simplified Particle Swarm Optimization (sPSO) algorithm [23] to generate new samples. We 
select the new samples which objective function (7) value is less than a certain threshold and 

remove those which are unqualified. This process is completed when the sample set is full or 

the iteration number reaches the preset maximum number. 
1)  Objective function 

In each iteration, we only select the new samples which the objective function (7) value is 

less than a certain threshold into the next iteration. 
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Where M is the number of anchor nodes, (xj, yj) (j=1,2,…,M) is the coordinate of anchor Aj, the 
coordinate of ith sample l

 i 

 t  in t moment is (x
 i 

 t , y
 i 

 t ) (i=1, 2,…, N). dj (or Dj) is the distance 

between the one-hop (or two-hop) anchor node Aj and sample l
 i 

 t . 

2)  The value of ωj 

In objective function (7), for one-hop anchors, ωj is 1; for two-hop anchors, the distance Dj 

between itself and the target node is the sum of two one-hop measure distance by RSSI and 
always larger than the actual distance, so ωj is not appropriate to be a constant. Therefore, we 

associate the value of ωj with the estimated position Ej calculated after the sampling and 

filtering phases. The value of ωj is given by formula (8) and (9). 

When the target node can hear both one-hop and two-hop anchors: 
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When the target node can hear only two-hop anchors: 
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3)  Simplified Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a popular bio-inspired stochastic global search 

algorithm proposed by Kennedy and Eberhart [24] that models the social behavior of a flock of 

birds. In this algorithm, all individuals in a population are seen as particles in a 
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multi-dimensional solution space. First of all, randomly initialize a group of particles in a 

population. Each of them is a feasible solution and its fitness value is determined by its 
position in the search space. Each particle moves in the solution space towards the randomly 

weighted average of the historical personal best position and the historical global best position, 

and finds the current global solution. In this paper, we utilize the simplified Particle Swarm 

Optimization (sPSO) algorithm without a velocity term as described in formula (10) for 
simplicity to generate new samples and choose those that meet the objective function (7) as 

valid samples to join the next iteration. 
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Where X

 k 

 i  (i=1, 2,…, N) is the coordinate of ith sample l
 i 

 t  in t moment in kth iteration. X
 k+1 

 i is 

the new sample coordinate after the kth iteration, pbesti is the historical personal best position 

of sample i where it had the smallest fitness, and gbest is the global best position of all samples, 

c1 and c2 are acceleration constants, rand1 and rand2 are random numbers uniformly 

distributed in [0, 1]. 

3.4 The Standard of Using Anchor Nodes 

As we know, more anchor nodes bring more information meanwhile one-hop anchors provide 
more accurate location information than two-hop anchors. However, the excessive use of 

anchor nodes may cause sampling dried up and waste of nodes’ energy. Therefore, in this 

paper, we use anchor nodes according to the following standards: 
1)  The maximum number of anchor nodes we use to localize a target node is four. 

2)  When the number of anchor nodes is less than four, we use all of them. 

3)  When the number of one-hop anchors is more than four, we do not use two-hop anchors 

any more. 
4)  Priority in use of nearest one-hop or two-hop anchor nodes. 

3.5 Algorithm Steps 

1)  Choose anchor nodes that we use to localize target nodes as described in Section 3.4. 

2)  Build sample box and then randomly draw N samples in the sample box. 

3)  Filter out those samples which do not meet the filter condition (6). 
4)  Generate new samples as described in Section 3.3 till the sample set is full or iteration 

number reaches the preset maximum number. 

5)  Calculate the average coordinates of all samples as the final estimated position: 
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6)  In particular, when the target node has no anchor around but successful localized in last 

moment, repeat step 2) ~ 3) to obtain valid sample set and then estimated the position of target 
nodes as described in step 5), otherwise the localization fails. 

Fig. 4 shows the flowchart of our proposed algorithm more clarity. 
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Fig. 4. Algorithm flowchart 

 

4. Simulation and Analysis 

4.1 Simulation Parameters 

The RMCL method [19] introduce the RSSI value only in the process of building the sample 
box, the filter condition is exactly the same as the MCL algorithm. The RMMCB method [20]

 

which divided the transmission range into n evenly spaced concentric circles strengthens the 

filter conditions by using the ranging information. However, the re-sampling method is too 

rough and the frequent use of motion prediction model to get weighted samples will cause an 
energy burden of sensor nodes. In our simulation, we compare the MCB, RMCL, RMMCB 

and our proposed RMCB algorithm under the same experimental setup. Simulation was 

carried out in MATLAB environment and the results are the average of 20 independent 
experiments. The parameters of the node localization algorithm are set as follows: 

 In a 300×300 square units sensor field, 300 sensor nodes which have the same 

transmission range R=30 units are deployed randomly. Among them, there are 50 anchor 
nodes knowing their location information, others are the target nodes that need to be 

positioned. 

 we assume all nodes move in the sensor field according to the random waypoint mobile 

model [25] (RWP). The maximum velocity vmax of all nodes is 10 units/s, each node can vary 
its velocity less than vmax at each time step before it reaches its destination. 

 The maximum number of samples N for each target node is 50. 
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 Since the RSSI ranging model has a certain degree of error, we assume the measured 

distance is the actual distance d plus a Gaussian additive white noise which can be expressed 
as d·(1±Pn /100), Pn=5 is the percentage noise. 

 Some special parameters in our RMCB algorithm: preset error coefficient δ=0.1, 

acceleration constants c1=c2=2.0, the threshold of objective function is 0.1R, the maximum 

iteration number of sPSO algorithm is 30. 

4.2 Localization Error 

Fig. 5 shows the localization error of four different localization approaches at the previous 50 
time steps. In mobile WSNs, the localization error of a node (the distance between its real 

position and estimated position) is changed over time duo to the mobility of the nodes. 

Accuracy of all algorithms are improved as time goes on and gradually stable since Monte 
Carlo methods utilize previous position information to localize current nodes. However, the 

localization error of our proposed RMCB algorithm is always lower than the MCB, RMCL 

and RMMCB algorithm by about 24%, 14% and 14% respectively on average. 

 
Fig. 5. Localization error with  time steps 

 

4.3 The Effect of Maximum Velocity 

When we build the sample box, the maximum velocity vmax is used to limit the sample location. 

As the value of vmax increases, the target node can hear more anchors to localize itself more 
accurately. In the mean time, the prediction area of the samples is larger which leads to low 

precision. Therefore, the maximum velocity has a great influence on positioning accuracy. In 

Fig. 6, we contrastive analysis the impact of vmax on positioning accuracy of four different 
algorithms. The variation tendencies of four curves are very similar. The localization error 

decreases firstly when vmax changes from 2.5 units/s to 7.5 units/s, and then gradually increases. 

The simulation results show that the localization errors of our RMCB algorithm is lower than 
the MCB, RMCL and RMMCB algorithm by about 22%, 11% and 14% respectively on 

average. 
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Fig. 6. Localization error with maximum velocity 

 

4.4 The Effect of Anchor Nodes Number 

As we know, the positioning accuracy can always be improved with the increase in the number 
of anchor nodes. However, we cannot use as many anchor nodes as we want since it is 

expensive. Therefore, even use a limited number of anchor nodes, the localization algorithm 

should also be able to achieve sufficient accuracy. The effect of the anchor nodes number on 
localization error is shown in Fig. 7. When the anchor nodes number is more than 50, the 

localization error of the four algorithms is gradually stable. However, the localization error of 

our proposed RMCB algorithm is always lower than the other three algorithms regardless of 
how many the anchor nodes number is. 

 
Fig. 7. Localization error with anchor nodes number 
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Fig. 8. Localization error with percentage noise 

 

4.5 The Effect of Percentage Noise 

Average of localization error for Pn (percentage noise in distance measurement) = 1, 3, 5, 7, 9 

are computed and analyzed in Fig. 8. Because of the accuracy of the MCB algorithm is not 
affected by distance measurement, we only contrast the other three algorithms here. As shown 

in this figure, the effect of Pn can be clearly seen. The localization error increases with the 

increasing noise Pn whatever the method is. However, our RMCB method is more precise than 
the RMCL and RMMCB method by about 13% and 14% on average. 

5. Conclusion and Future Work 

In this paper, we propose a Range-based Monte Carlo Box (RMCB) algorithm for mobile 

nodes localization in WSNs. The main contributions of this paper are the following four parts: 

(1) It improves the efficiency and success rate of sampling by using the RSSI ranging 
technique to build the sample box. (2) It enhances the accuracy of valid samples by adding a 

preset error coefficient in the sampling and filtering phase since the RSSI ranging model has a 

certain degree of error. (3) It introduces the sPSO algorithm to generate new samples and 

avoid constantly repeated sampling and filtering process. (4) The dynamic weight instead of 
constant for two-hop anchors in objective function makes the sample generation process more 

accurately and quickly. Simulation results denote that our proposed RMCB algorithm can 

reduce the localization error by 24%, 14% and 14% on average compared to the MCB, RMCL 
and RMMCB algorithm respectively and always achieves higher precision under the various 

conditions of changing maximum velocity, anchor numbers and percentage noise. Thus, it is 

suitable for high precision required positioning scenes. For simplicity, most of the mobile 
node localization algorithms are considered in two-dimensional space, which not conforms to 

the actual situation. Therefore, how to localize mobile sensor nodes in three-dimensional 
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space is our research direction in the future. 
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