DOI QR코드

DOI QR Code

Optimization of a horizontal axis marine current turbine via surrogate models

  • Thandayutham, Karthikeyan (Wave Energy and Fluids Engineering Laboratory (WEFEL), Department of Ocean Engineering, Indian Institute of Technology Madras) ;
  • Avital, E.J. (School of Engineering and Material Science, Queen Mary University of London) ;
  • Venkatesan, Nithya (School of Electrical Engineering, VIT University) ;
  • Samad, Abdus (Wave Energy and Fluids Engineering Laboratory (WEFEL), Department of Ocean Engineering, Indian Institute of Technology Madras)
  • Received : 2018.12.12
  • Accepted : 2019.05.10
  • Published : 2019.06.25

Abstract

Flow through a scaled horizontal axis marine current turbine was numerically simulated after validation and the turbine design was optimized. The computational fluid dynamics (CFD) code Ansys-CFX 16.1 for numerical modeling, an in-house blade element momentum (BEM) code for analytical modeling and an in-house surrogate-based optimization (SBO) code were used to find an optimal turbine design. The blade-pitch angle (${\theta}$) and the number of rotor blades (NR) were taken as design variables. A single objective optimization approach was utilized in the present work. The defined objective function was the turbine's power coefficient ($C_P$). A $3{\times}3$ full-factorial sampling technique was used to define the sample space. This sampling technique gave different turbine designs, which were further evaluated for the objective function by solving the Reynolds-Averaged Navier-Stokes equations (RANS). Finally, the SBO technique with search algorithm produced an optimal design. It is found that the optimal design has improved the objective function by 26.5%. This article presents the solution approach, analysis of the turbine flow field and the predictability of various surrogate based techniques.

Keywords

Acknowledgement

Supported by : UK India Education and Research Initiative (UKIERE)

References

  1. Aerodyn, V. and Murray, R. (2017), Predicting Cavitation on Marine and Hydrokinetic Turbine Predicting Cavitation on Marine and Hydrokinetic Turbine Blades with AeroDyn V15.04.Technical report, NREL/TP-5000-68398, August 2017.
  2. Ai, K., Avital, E.J., Korakianitis, T., Samad, A., Venkatesan, N., Eng, O., et al. (2016), "Surface wave effect on marine current turbine, modelling and analysis", Proceedings of the 7th International Conference on Mechanical and Aerospace Engineerng, UK.
  3. Amet, E., Maitre, T., Pellone, C. and Achard, J.L. (2009), "2D numerical simulations of blade-vortex interaction in a darrieus turbine", J. Fluid. Eng. T- ASME, 131, 111103. doi:10.1115/1.4000258.
  4. Badhurshah, R. and Samad, A. (2015), "Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion", Renew. Energ., 74, 749-760. doi:10.1016/j.renene.2014.09.001.
  5. Bahaj, A.S., Molland, A.F., Chaplin, J.R. and Batten, W.M.J. (2007), "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank", Renew. Energ., 32, 407-426. doi:10.1016/j.renene.2006.01.012.
  6. Bahaj, A.S. and Myers, L.E. (2003), "Fundamentals applicable to the utilisation of marine current turbines for energy production", Renew. Energ., 28, 2205-2211. doi:10.1016/S0960-1481(03)00103-4.
  7. Bai, X., Avital, E.J., Munjiza, A. and Williams, J.J.R. (2014), "Numerical simulation of a marine current turbine in free surface flow", Renew. Energ., 63, 715-723. doi:10.1016/j.renene.2013.09.042.
  8. Bal, S., Atlar, M. and Usar, D. (2015), "Performance prediction of horizontal axis marine current turbines", Ocean Syst. Eng., 5(2), 125-138. doi:10.12989/ose.2015.5.2.125.
  9. Barber, R.B. (2017), Adaptive Pitch Composite Blades for Axial-Flow Marine Hydrokinetic Turbines.
  10. Batten, W.M.J., Bahaj, A.S., Molland, A.F. and Chaplin, J.R. (2007), "Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines", Ocean Eng., 34, 1013-1020. doi:10.1016/j.oceaneng.2006.04.008.
  11. Batten, W.M.J., Harrison, M.E. and Bahaj, A.S. (2013), "Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines", Philos. Trans. A. Math. Phys. Eng. Sci., 371, 20120293. doi:10.1098/rsta.2012.0293.
  12. Blackmore, T., Myers, L.E. and Bahaj, A.S. (2016), "Effects of turbulence on tidal turbines: Implications to performance, blade loads, and condition monitoring", Int. J. Mar. Energy, 14, 1-26. doi:10.1016/j.ijome.2016.04.017.
  13. Chini, R., Ordonez, M. and Bachmayer, R. (2011), "Blades optimization for an ocean current horizontal axis turbine using response surface methodology", Ocean. 2011 IEEE - Spain. doi:10.1109/Oceans-Spain.2011.6003646.
  14. Coiro, D.P., Daniele, E. and Della Vecchia, P. (2016), "Diffuser shape optimization for GEM, a tethered system based on two horizontal axis hydro turbines", Int. J. Mar. Energy, 13, 169-179. doi:10.1016/j.ijome.2015.08.002.
  15. Delafin, P., Nishino, T., Wang, L. and Kolios, A. (2016), "Effect of the number of blades and solidity on the performance of a vertical axis wind turbine", J. Phys. Conf. Ser., 753, 022033. doi:10.1088/1742-6596/753/2/022033.
  16. Ezhilsabareesh, K., Rhee, S.H. and Samad, A. (2018), "Shape optimization of a bidirectional impulse turbine via surrogate models", Eng. Appl. Comput. Fluid Mech., 12, 1-12. doi:10.1080/19942060.2017.1330709.
  17. Goel, T., Haftka, R.T., Shyy, W. and Queipo, N.V. (2007), "Ensemble of surrogates", 199-216. doi:10.1007/s00158-006-0051-9.
  18. Gong, X., Liao, D., Chen, T., Zhou, J. and Yin, Y. (2016), "Optimization of steel casting feeding system based on BP neural network and genetic algorithm", China Foundry, 13(3), 182-190. doi:10.1007/s41230-016-6008-8.
  19. Goundar, J.N., Ahmed, M.R. and Lee, Y.H. (2012), "Numerical and experimental studies on hydrofoils for marine current turbines", Renew. Energ., 42, 173-179. doi:10.1016/j.renene.2011.07.048.
  20. Guo, Q., Zhou, L. and Wang, Z. (2015), "Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine", Renew. Energ., 75, 640-648. doi:10.1016/j.renene.2014.10.047.
  21. Hansen, M.O. (2015), "Aerodynamics of wind turbines", Routledge Taylor Fr. Gr., 1-189. doi:10.1002/0470846127.
  22. Huang, B. and Kanemoto, T. (2015), "Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine", Renew. Energ., 81, 837-844. doi:10.1016/j.renene.2015.04.008.
  23. Karthikeyan, T., Avital, E.J., Venkatesan, N. and Samad, A. (2017), "Design and analysis of a marine current turbine", Proceedings of the ASME 2017 Gas Turbine India Conference, GTINDIA 2017 doi:10.1115/GTINDIA2017-4912.
  24. Kinnas, S.A., Xu, W., Yu, Y.H. and He, L. (2012), "Computational methods for the design and prediction of performance of tidal turbines", J. Offshore Mech. Arct. Eng., 134, 011101. doi:10.1115/1.4003390.
  25. Kolekar, N. and Banerjee, A. (2013), "A coupled hydro-structural design optimization for hydrokinetic turbines", J. Renew. Sust. Energ., 5. doi:10.1063/1.4826882.
  26. Koo, G.W., Lee, S.M. and Kim, K.Y. (2014), "Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling", Appl. Therm. Eng., 72, 90-96. doi:10.1016/j.applthermaleng.2013.12.009.
  27. Lee, H., Jo, Y., Lee, D.J. and Choi, S. (2016), "Surrogate model based design optimization of multiple wing sails considering flow interaction effect", Ocean Eng., 121, 422-436. doi:10.1016/j.oceaneng.2016.05.051.
  28. Leroux, T., Osbourne, N. and Groulx, D. (2019), "Numerical study into horizontal tidal turbine wake velocity de fi cit : Quasi- steady state and transient approaches", Ocean Eng., 181, 240-251. doi:10.1016/j.oceaneng.2019.04.019.
  29. Liu, J., Lin, H., Purimitla, S.R. and Das E.T, M. (2017), "The effects of blade twist and nacelle shape on the performance of horizontal axis tidal current turbines", Appl. Ocean Res., 64, 58-69. doi:10.1016/j.apor.2017.02.003.
  30. Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32, 1598-1605. doi:10.2514/3.12149.
  31. Moriarty, P.J. and Hansen, A.C. (2005), "AeroDyn theory manual", Renew. Energ., 15, 500-36313. doi:10.1146/annurev.fl.15.010183.001255.
  32. Morris, C.E., O'Doherty, D.M., Mason-Jones, A. and O'Doherty, T. (2016), "Evaluation of the swirl characteristics of a tidal stream turbine wake", Int. J. Mar. Energy, 14, 198-214. doi:10.1016/j.ijome.2015.08.001.
  33. Myers, L. and Bahaj, A.S. (2007), "Wake studies of a 1/30th scale horizontal axis marine current turbine", Ocean Eng., 34, 758-762. doi:10.1016/j.oceaneng.2006.04.013.
  34. Nishino, T. and Willden, R.H.J. (2012), "Effects of 3-D channel blockage and turbulent wake mixing on the limit of power extraction by tidal turbines", Int. J. Heat Fluid Fl., 37, 123-135. doi:10.1016/j.ijheatfluidflow.2012.05.002.
  35. Priegue, L. and Stoesser, T. (2016), "The influence of blade roughness on the performance of a vertical axis tidal turbine", Submitted to Int. J. Mar. Energy, 17, 136-146. doi:10.1016/j.ijome.2017.01.009.
  36. Rahimian, M., Walker, J. and Penesis, I. (2018), "Performance of a horizontal axis marine current turbine- A comprehensive evaluation using experimental, numerical, and theoretical approaches", Energy, 148, 965-976. doi:10.1016/j.energy.2018.02.007.
  37. Ren, Y., Liu, B., Zhang, T. and Fang, Q. (2017), "Design and hydrodynamic analysis of horizontal axis tidal stream turbines with winglets", Ocean Eng., 144, 374-383. doi:10.1016/j.oceaneng.2017.09.038.
  38. Rosli, R., Norman, R. and Atlar, M. (2016), "Experimental investigations of the Hydro-Spinna turbine performance", Renew. Energy, 99, 1227-1234. doi:10.1016/j.renene.2016.08.034.
  39. Samad, A., Kim, K.Y., Goel, T., Haftka, R.T. and Shyy, W. (2008), "Multiple surrogate modeling for axial compressor blade shape optimization", J. Propuls. Power, 24, 301-310. doi:10.2514/1.28999.
  40. Schleicher, W.C., Riglin, J.D. and Oztekin, A. (2015), "Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design", Renew. Energy, 76, 234-241. doi:10.1016/j.renene.2014.11.032.
  41. Schluntz, J. and Willden, R.H.J. (2015), "The effect of blockage on tidal turbine rotor design and performance", Renew. Energ., 81, 432-441. doi:10.1016/j.renene.2015.02.050.
  42. Subhra Mukherji, S., Kolekar, N., Banerjee, A. and Mishra, R. (2011), "Numerical investigation and evaluation of optimum hydrodynamic performance of a horizontal axis hydrokinetic turbine", Renew. Sust. Energ., 3. doi:10.1063/1.3662100.
  43. Tahani, M., Babayan, N., Astaraei, F.R. and Moghadam, A. (2015), "Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms", Energy Convers. Manage, 103, 487-498. doi:10.1016/j.enconman.2015.06.086.
  44. Tian, W., Song, B., VanZwieten, J.H., Pyakurel, P. and Li, Y. (2016a), "Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms", Int. J. Nav. Archit. Ocean Eng., 8, 73-82. doi:10.1016/j.ijnaoe.2015.10.003.
  45. Tian, W., VanZwieten, J.H., Pyakurel, P. and Li, Y. (2016b), "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine", Energy, 111, 104-116. doi:10.1016/j.energy.2016.05.012.
  46. Turnock, S.R., Phillips, A.B., Banks, J. and Nicholls-Lee, R. (2011), "Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines", Ocean Eng., 38, 1300-1307. doi:10.1016/j.oceaneng.2011.05.018.
  47. Vennell, R. (2013), "Exceeding the Betz limit with tidal turbines", Renew. Energ., 55, 277-285. doi:10.1016/j.renene.2012.12.016.
  48. Wei, X., Huang, B., Liu, P., Kanemoto, T. and Wang, L. (2015), "Experimental investigation into the effects of blade pitch angle and axial distance on the performance of a counter-rotating tidal turbine", Ocean Eng., 110, 78-88. doi:10.1016/j.oceaneng.2015.10.010.
  49. Zhu, B., Sun, X., Wang, Y. and Huang, D. (2017), "Performance characteristics of a horizontal axis turbine with fusion winglet", Energy, 120, 431-440. doi:10.1016/j.energy.2016.11.094.
  50. Zhu, G.J., Guo, P.C., Luo, X.Q. and Feng, J.J. (2012), "The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm", Proceedings of the IOP Conf. Ser. Earth Environ. Sci., 15, 42039. doi:10.1088/1755-1315/15/4/042039.

Cited by

  1. Surrogate-Based Optimization of Horizontal Axis Hydrokinetic Turbine Rotor Blades vol.14, pp.13, 2019, https://doi.org/10.3390/en14134045
  2. Multi-objective structural optimization of a wind turbine blade using NSGA-II algorithm and FSI vol.93, pp.6, 2019, https://doi.org/10.1108/aeat-02-2021-0055