Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.4.471

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes  

Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Lemonis, Minas E. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Nguyen, Thuy-Anh (University of Transport Technology)
Le, Hiep Van (Institute of Research and Development, Duy Tan University)
Pham, Binh Thai (University of Transport Technology)
Publication Information
Steel and Composite Structures / v.39, no.4, 2021 , pp. 471-491 More about this Journal
Abstract
In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.
Keywords
CFST column; artificial neural network; ultimate axial load; balancing composite motion optimization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2019), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. with Comput., https://doi.org/10.1007/s00366-019-00808-y.   DOI
2 Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124, 1125-1138.   DOI
3 Shakir-Khalil, H. and Zeghiche, J. (1989), "Experimental Behaviour of Concrete-Filled Rolled Rectangular Hollow-Section Columns", The Structural Engineer, 67, 346-353.
4 Shakir-Khalil, H. and Mouli, M. (1990), "Further Tests on Concrete-Filled Rectangular Hollow-Section Columns", The Structural Engineer, 68, 405-413.
5 Soize, C. (Ed.) (2012), Stochastic Models of Uncertainties in Computational Mechanics. Reston, VA: ASCE.
6 Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57, 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.   DOI
7 Varma, A.H., Ricles, J.M., Sause R. and Lu, L.W. (2004), "Seismic Behavior and and Design of High-Strength Square Concrete-Filled Steel Tube Beam Columns", J. Struct. Eng., 130, 169-179. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(169).   DOI
8 Vos de, N.J. and Rientjes, T.H.M. (2008), "Multiobjective training of artificial neural networks for rainfall-runoff modeling", Water Resour. Res., 44. https://doi.org/10.1029/2007WR006734.   DOI
9 Han, L.H. and Yao, G.H. (2003), "Influence of concrete compaction on the strength of concrete-filled steel RHS columns", Journal of Constructional Steel Research, 59, 751-767. https://doi.org/10.1016/S0143-974X(02)00076-7.   DOI
10 Han, L.H. and Yang, Y.F. (2003), "Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads", Thin-Wall. Struct., 41, 849-870. https://doi.org/10.1016/S0263-8231(03)00029-6.   DOI
11 Han, L.H., Hou, C. and Wang, Q.L. (2012), "Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: experiments", J. Constr. Steel Res., 71, 11-25.   DOI
12 Han, L.H., Huo, J.S. and Wang, Y.C. (2005), "Compressive and flexural behaviour of concrete filled steel tubes after exposure to standard fire", J. Constr. Steel Res., 61, 882-901.   DOI
13 Yamamoto, T., Kawaguchi, J. and Morino, S. (2002), "Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns", Composite Construction in Steel and Concrete IV. 879-890.
14 Wei, H., Du, Y. and Wang, H.J. (2012), "Seismic Behavior of Concrete Filled Circular Steel Tubular Columns Based on Artificial Neural Network", Adv. Mater. Res., 502, 189-192.   DOI
15 Xiao, Y.F. (2012), "Approach of Concrete-Filled Steel Tube Ultrasonic Method Based on ANN", Appl. Mech. Mater., 105, 1611-1615.   DOI
16 Xiong, M.X., Xiong, D.X. and Liew, J.Y.R. (2017), "Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials", Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037.   DOI
17 Yao, X., Liu, Y. and Lin, G. (1999), "Evolutionary programming made faster", IEEE T. Evolu. Comput., 3, 82-102. https://doi.org/10.1109/4235.771163.   DOI
18 Young, B. (2008), "Experimental and numerical investigation of high strength stainless steel structures", J. Constr. Steel Res., 64, 1225-1230.   DOI
19 Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res.,100, 211-228.   DOI
20 Han, L.H., Tao, Z. and Liu, W. (2004), "Effects of Sustained Load on Concrete-Filled Hollow Structural Steel Columns", J. Struct. Eng., 130, 1392-1404. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1392).   DOI
21 Hun, D.A., Guilleminot, J., Yvonnet, J. and Bornert, M. (2019), "Stochastic multiscale modeling of crack propagation in random heterogeneous media", Int. J. Numer. Method. Eng., 119, 1325-1344. https://doi.org/10.1002/nme.6093.   DOI
22 Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2021), "Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment", Eng. Struct., 230, 111687. https://doi.org/10.1016/j.engstruct.2020.111687.   DOI
23 Jegadesh, J. and Jayalekshmi, S. (2015), "A Review on Artificial Neural Network Concepts in Structural Engineering Applications", Int. J. Appl. Civil Environ. Eng., 1, 6-11.
24 Yu, M., Zha, X., Ye, J. and Li, Y. (2013), "A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression", Eng. Struct., 49, 1-10.   DOI
25 Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46, 362-370. https://doi.org/10.1016/j.tws.2007.10.001.   DOI
26 Vrcelj, Z. and Uy, B. (2002), "Behaviour and Design of Steel Square Hollow Sections Filled With High Strength Concrete", Australian J. Struct. Eng., 3, 153-170. https://doi.org/10.1080/13287982.2002.11464902.   DOI
27 Liu, S., Ding, X., Li, X., Liu, Y. and Zhao, S. (2019). "Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression", Materials, 12, 2716.   DOI
28 Ly, H.B., Le, L.M., Duong, H.T., Nguyen, T.C., Pham, T.A., Le, T.T., Le, V.M., Nguyen-Ngoc, L. and Pham, B.T. (2019), "Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections", Appl. Sci., 9, 2258. https://doi.org/10.3390/app9112258.   DOI
29 Ly, H.B., Le, L.M., Phi, L.V., Phan, V.H., Tran, V. Q., Pham, B.T., Le, T.T. and Derrible, S. (2019b), "Development of an AI Model to Measure Traffic Air Pollution from Multisensor and Weather Data", Sensors, 19, 4941. https://doi.org/10.3390/s19224941.   DOI
30 Kayacan, E. and Khanesar, M.A. (2015), Fuzzy Neural Networks for Real Time Control Applications: Concepts, Modeling and Algorithms for Fast Learning. 1. Butterworth-Heinemann.
31 Knowles, R.B. and Park, R. (1969), "Strength of Concrete Filled Steel Tubular Columns", J. Struct. Division, 95, 2565-2588.   DOI
32 Zhao, O., Rossi, B., Gardner, L. and Young, B. (2015), "Behaviour of structural stainless steel cross-sections under combined loading-Part I: Experimental study", Eng. Struct., 89, 236-246.   DOI
33 Zhu, A., Zhang, X., Zhu, H., Zhu, J. and Lu, Y. (2017), "Experimental study of concrete filled cold-formed steel tubular stub columns", J. Constr. Steel Res., 134, 17-27. https://doi.org/10.1016/j.jcsr.2017.03.003.   DOI
34 Khan, M., Uy, B., Tao, Z. and Mashiri, F. (2017), "Concentrically loaded slender square hollow and composite columns incorporating high strength properties", Eng. Struct., 131, 69-89. https://doi.org/10.1016/j.engstruct.2016.10.015.   DOI
35 Khan, M., Uy, B., Tao, Z. and Mashiri, F. (2017b). "Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections", Eng. Struct., 147, 458-472. https://doi.org/10.1016/j.engstruct.2017.06.016.   DOI
36 Khanouki, M.M.A., Ramli Sulong, N.H., Shariati, M. and Tahir, M.M. (2016). "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Constr. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002.   DOI
37 Lam, D. and Williams, C.A. (2004), "Experimental study on concrete filled square hollow sections", Steel Compos. Struct., 4(2), 95-112. https://doi.org/10.12989/scs.2004.4.2.095.   DOI
38 Lam, D., Yang, J. and Dai, X. (2019), "Finite element analysis of concrete filled lean duplex stainless steel columns", Structures, 21, 150-155. https://doi.org/10.1016/j.istruc.2019.01.024.   DOI
39 Le, T.T. (2015), "Stochastic modeling in continuum mechanics, of the inclusion-matrix interphase from molecular dynamics simulations", Ph.D. dissertation, University of Paris-Est Marne-la-Vallee.
40 Le, T.T., Guilleminot, J. and Soize, C. (2016), "Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite", Comput. Method. Appl. M., 303, 430-449. https://doi.org/10.1016/j.cma.2015.10.006.   DOI
41 Tran, V.P., Guilleminot, J., Brisard, S. and Sab, K. (2016), "Stochastic modeling of mesoscopic elasticity random field", Mech. Mater., 93, 1-12. https://doi.org/10.1016/j.mechmat.2015.10.007.   DOI
42 Qi, C., Ly, H.B., Chen, Q., Le, T.T., Le, V.M. and Pham, B.T. (2020). "Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach", Chemosphere, 244, 12545. https://doi.org/10.1016/j.chemosphere.2019.125450.   DOI
43 Montavon, G., Rupp, M., Gobre, V., Vazquez-Mayagoitia, A., Hansen, K., Tkatchenko, A., Muller, K.R. and Lilienfeld von, O.A. (2013), "Machine learning of molecular electronic properties in chemical compound space", New J. Phys., 15, 095003. https://doi.org/10.1088/1367-2630/15/9/095003.   DOI
44 Mursi, M. and Uy, B. (2004), "Strength of slender concrete filled high strength steel box columns", J. Constr. Steel Res., 60, 1825-1848. https://doi.org/10.1016/j.jcsr.2004.05.002.   DOI
45 Pham, B.T., Le, L.M., Le, T.T., Bui, K.T.T., Le, V.M., Ly, H.B. and Prakash, I. (2020), "Development of advanced artificial intelligence models for daily rainfall prediction", Atmos. Res., 237, 104845. https://doi.org/10.1016/j.atmosres.2020.104845.   DOI
46 Pokharel, T., Yao, H., Goldsworthy, H.M. and Gad, E.F. (2016), "Experimental and analytical behaviour of cogged bars within concrete filled circular tubes", Steel Compos. Struct., 20(5), 1067-1085. https://doi.org/10.12989/SCS.2016.20.5.1067.   DOI
47 Powell, M.J.D. (1977), "Restart procedures for the conjugate gradient method", Math. Program., 12, 241-254. https://doi.org/10.1007/BF01593790.   DOI
48 Qi, C., Tang, X., Dong, X., Chen, Q., Fourie, A. and Liu, E. (2019), "Towards Intelligent Mining for Backfill: A genetic programming-based method for strength forecasting of cemented paste backfill", Minerals Eng., 133, 69-79. https://doi.org/10.1016/j.mineng.2019.01.004.   DOI
49 Molnar, C. (2019), Interpretable Machine Learning. Lulu.com.
50 Pham, B.T., et al. (2019b), "Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis", Science of The Total Environ., 679, 172-184. https://doi.org/10.1016/j.scitotenv.2019.05.061.   DOI
51 Soize, C., Desceliers, C., Guilleminot, J., Le, T.T., Nguyen, M.T., Perrin, G., Allain, J.M., Gharbi, H., Duhamel, D. and Funfschilling, C. (2015), "Stochastic representations and statistical inverse identification for uncertainty quantification in computational mechanics", Proceedings of the UNCECOMP 2015, 1st ECCOMAS Thematic International Conference on Uncertainty Quantification in Computational Sciences and Engineering.
52 Yang, Y.F. and Han, L.H. (2012), "Concrete filled steel tube (CFST) columns subjected to concentrically partial compression", Thin-Wall. Struct., 50, 147-156. https://doi.org/10.1016/j.tws.2011.09.007.   DOI
53 Yu, Z., Ding, F. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63, 165-174.   DOI
54 Bradford, M.A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58, 243-252.   DOI
55 Bridge, R.Q. (1976), Concrete filled steel tubular columns. Sydney, Australia: School of Civil Engineering, University of Sydney. https://trove.nla.gov.au/work/35477622?q&versionId=44129332.
56 Capillon, R., Desceliers, C. and Soize, C. (2016), "Uncertainty quantification in computational linear structural dynamics for viscoelastic composite structures", Comput. Method. Appl. M., 305, 154-172. https://doi.org/10.1016/j.cma.2016.03.012.   DOI
57 Song, T.Y., Tao, Z., Han, L.H. and Uy, B. (2017), "Bond behavior of concrete-filled steel tubes at elevated temperatures", J. Struct. Eng., 143, 04017147.   DOI
58 Ali, F., Nadjai, A. and Goodfellow, N. (2016), "Experimental and numerical study on the performance of hollow and concrete-filled elliptical steel columns subjected to severe fire", Fire Mater., 40, 635-652. https://doi.org/10.1002/fam.2316.   DOI
59 Fam, A., Qie, F.S. and Rizkalla, S. (2004), "Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads", J. Struct. Eng., 130, 631-640.   DOI
60 Jegadesh, S. and Jayalekshmi, S. (2015b), "Application of artificial neural network for calculation of axial capacity of circular concrete filled steel Tubular Columns", Int. J. Earth Sci. Eng., 8, 35-42.
61 Pham, B.T., Jaafari, A., Prakash, I. and Bui, D.T. (2019), "A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling", Bull. Eng. Geol. Environ., 78, 2865-2886. https://doi.org/10.1007/s10064-018-1281-y.   DOI
62 Ly, H.B., Monteiro, E., Le, T.T., Le, V.M., Dal, M., Regnier, G. and Pham, B.T. (2019d), "Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees", Materials, 12, 1544. https://doi.org/10.3390/ma12091544.   DOI
63 Marquardt, D. (1963), "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", J. Soc. Ind. Appl. Math., 11, 431-441. https://doi.org/10.1137/0111030.   DOI
64 MathWorks The. (2018), MATLAB. Natick, Massachusetts: The MathWorks Inc.
65 Matsui, C., Tsuda, K., Ozaki, I. and Ishibashi, Y. (1997), "Strength of Slender Concrete Filled Steel Tubular Columns", J. Struct. Constr. Eng. (Transactions of AIJ), 62, 137-144. https://doi.org/10.3130/aijs.62.137_1.   DOI
66 Moller, M.F. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neural Networks, 6, 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5.   DOI
67 Bergmann, R. (1994), "Load Introduction in Composite Columns Filled With High Strength Concrete", (Eds., Holgate A. Grundy and Wong), Tubular Structures VI, Proceedings of the Sixth International Symposium on Tubular Structures. Melbourne, Australia: A. A. Balkema, Rotterdam, The Netherlands. 373-380.
68 Caprili, S. and Salvatore, W. (2015), "Cyclic behaviour of uncorroded and corroded steel reinforcing bars", Constr. Build. Mater., 76, 168-186. https://doi.org/10.1016/j.conbuildmat.2014.11.025.   DOI
69 Chang, X., Wei, Y.Y. and Yun, Y.C. (2012). "Analysis of steel-reinforced concrete-filled-steel tubular (SRCFST) columns under cyclic loading", Constr. Build. Mater., 28, 88-95.   DOI
70 Chen, C.C., Ko, J.W., Huang, G.L. and Chang, Y.M. (2012), "Local buckling and concrete confinement of concrete-filled box columns under axial load", J. Constr.l Steel Res., 78, 8-21. https://doi.org/10.1016/j.jcsr.2012.06.006.   DOI
71 Chapman, J.C. and Neogi, P.K. (1964). Research on concrete-filled tubular columns. London: Engineering Structures Laboratories, Civil Engineering Dept., Imperial College.
72 Krishan, A.L., Chernyshova, E.P. and Sabirov, R.R. (2016), "Calculating the Strength of Concrete Filled Steel Tube Columns of Solid and Ring Cross-Section", Procedia Eng., 150, 1878-1884.   DOI
73 Qi, C., Fourie, A., Chen, Q. and Zhang, Q. (2018). "A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill", J. Cleaner Production, 183, 566-578. https://doi.org/10.1016/j.jclepro.2018.02.154.   DOI
74 Hasanzadehshooiili, H., Lakirouhani, A. and Sapalas, A. (2012), "Neural network prediction of buckling load of steel arch-shells." Arch. Civil Mech. Eng., 12, 477-484. https://doi.org/10.1016/j.acme.2012.07.005.   DOI
75 Vasugi, K. and Elavenil, S. (2019), "Confinement of concrete by stainless steel tubular sections - A review", Int. J. Eng. Adv. Technol., 8, 468-472.   DOI
76 Sarir, P., Shen, S.L., Wang, Z.F., Chen, J., Horpibulsuk, S. and Pham, B.T. (2019b), "Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC", Eng. with Comput., 1-11.
77 Choi, K.K. and Xiao, Y. (2009), "Analytical studies of concrete-filled circular steel tubes under axial compression", J. Struct. Eng., 136, 565-573.   DOI
78 Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Constr. Steel Res., 66, 931-942.   DOI
79 Furlong, R.W. (1967), "Strength of Steel-Encased Concrete Beam Columns", J. Struct. Division, 93, 113-124.   DOI
80 Ghannam, S., Jawad, Y.A. and Hunaiti, Y. (2004), "Failure of lightweight aggregate concrete-filled steel tubular columns", Steel Compo. Struct., 4, 1-8. https://doi.org/10.12989/scs.2004.4.1.001.   DOI
81 Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr.l Steel Res., 60, 1049-1068.   DOI
82 Goel, T. and Tiwary, A. (2018), "Finite Element Modeling of Circular Concrete Filled Steel Tube (CFST)", Indian J. Sci. Technol., 11, 1-9. https://doi.org/10.17485/ijst/2018/v11i34/130853.   DOI
83 Goldstein, A., Kapelner, A., Bleich, J. and Pitkin, E. (2015), "Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation", J. Comput. Graphical Stat., 24, 44-65.   DOI
84 Grauers, M. (1993), "Composite columns of hollow steel sections filled with high strength concrete." Ph.D. dissertation, Chalmers University.
85 Ly, H.B., Le, T. T., Le, L.M., Tran, V.Q., Le, V.M., Vu, H.L.T., Nguyen, Q.H. and Pham, B.T. (2019c). "Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams." Applied Sciences, 9, 5458. https://doi.org/10.3390/app9245458.   DOI
86 Guilleminot, J., Le, T.T. and Soize, C. (2013), "Stochastic framework for modeling the linear apparent behavior of complex materials: Application to random porous materials with interphases", Acta Mechanica Sinica. 29, 773-782. https://doi.org/10.1007/s10409-013-0101-7.   DOI
87 Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res., 58, 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1.   DOI
88 Han, L.H. and Yang, Y.F. (2001), "Influence of concrete compaction on the behavior of concrete filled steel tubes with rectangular sections", Adv. Struct. Eng., 4, 93-100.   DOI
89 Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network', Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.   DOI
90 Du, Y., Chen, Z. and Xiong, M.X. (2016), "Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel", Constr. Build. Mater., 125, 856-872. https://doi.org/10.1016/j.conbuildmat.2016.08.057.   DOI
91 Le, T.T., Guilleminot, J. and Soize, C. (2015), "Stochastic continuum modeling of random interphases from atomistic simulations", Euromech 559, Multi-scale computational methods for bridging scales in materials and structures, Eindhoven, The Netherlands
92 Ding, F., Fang, C., Bai, Y. and Gong, Y. (2014). "Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading", J. Constr. Steel Res., 98, 146-157. https://doi.org/10.1016/j.jcsr.2014.03.005.   DOI
93 Le-Duc, T., Nguyen, Q.H. and Nguyen-Xuan, H. (2020), "Balancing composite motion optimization", Information Sciences, 520, 250-270. https://doi.org/10.1016/j.ins.2020.02.013.   DOI
94 Lin, C.Y. (1988), "Axial Capacity of Concrete Infilled Cold-formed Steel Columns", Proceedings of the 9th International Specialty Conference on Cold-Formed Steel Structures. St. Louis, Missouri, U.S.A.
95 Dao, D.V., Adeli, H., Ly, H.B., Le, L.M., Le, V.M., Le, T.T. and Pham, B.T. (2020b), "A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation", Sustainability, 12, 830. https://doi.org/10.3390/su12030830.   DOI
96 Du, K.L. and Swamy, M.N. (2013), Neural networks and statistical learning. Springer Science & Business Media.
97 Du, Y., Chen, Z., Zhang, C. and Cao, X. (2017). "Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks", Front. Comput. Sci., 11, 863-873.   DOI
98 Duan, J., Asteris, P.G., Nguyen, H. Bui, X.N. and Moayedi, H. (2020), "A Novel Artificial Intelligence Technique to Predict Compressive Strength of Recycled Aggregate Concrete Using ICA-XGBoost Model", Eng. With Comput., https://doi.org/10.1007/s00366-020-01003-0.   DOI
99 Raghuwanshi, N.S., Singh, R. and Reddy, L.S. (2006), "Runoff and Sediment Yield Modeling Using Artificial Neural Networks: Upper Siwane River, India", J. Hydrologic Eng., 11, 71-79. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(71).   DOI
100 Ren, Q., Li, M., Zhang, M., Shen, Y. and Si, W. (2019), "Prediction of Ultimate Axial Capacity of Square Concrete-Filled Steel Tubular Short Columns Using a Hybrid Intelligent Algorithm", Appl. Sci., 9, 2802. https://doi.org/10.3390/app9142802.   DOI
101 Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323, 533-536. https://doi.org/10.1038/323533a0.   DOI
102 Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2017), "ANN model for predicting the compressive strength of circular steel-confined concrete", Int. J. Civil Eng., 15, 213-221.   DOI
103 Dundu, M. (2016). "Column buckling tests of hot-rolled concrete filled square hollow sections of mild to high strength steel", Eng. Struct., 127, 73-85. https://doi.org/10.1016/j.engstruct.2016.08.039.   DOI
104 Dao, D.V., et al. (2020), "A spatially explicit deep learning neural network model for the prediction of landslide susceptibility", CATENA, 188, 104451. https://doi.org/10.1016/j.catena.2019.104451.   DOI
105 Abambres, M., Rajana, K., Tsavdaridis, K.D. and Ribeiro, T.P. (2019), "Neural Network-Based Formula for the Buckling Load Prediction of I-Section Cellular Steel Beams", Computers, 8, 2. https://doi.org/10.3390/computers8010002.   DOI
106 Akbar, H., Suryana, N. and Sahib, S. (2011), "Training neural networks using Clonal Selection Algorithm and Particle Swarm Optimization: A comparisons for 3D object recognition", Proceedings of the 2011 11th International Conference on Hybrid Intelligent Systems (HIS).
107 Al-Khaleefi, A.M., Terro, M.J., Alex, A.P. and Wang, Y. (2002), "Prediction of fire resistance of concrete filled tubular steel columns using neural networks", Fire Saf. J., 37, 339.   DOI
108 Sakino, K. and Hayashi, H. (1991), "Behavior of Concrete Filled Steel Tubular Stub Columns under Concentric Loading", Proceedings of the 3rd Int. Conf. on Steel-Concrete Composite Structures. Fukuoka, Japan.
109 Sakino, K., Morino, H., Nakaharaand, S. and Nishiyama, I. (2004), "Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns", J. Struct. Eng., 130, 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).   DOI
110 Arani, K.S., Zandi, Y., Pham, B.T., Muazu, M.A., Katebi, J., Mohammadhassani, M., Khalafi, S., Mohamad, E.T., Wakil, K. and Khorami, M. (2019), "Computational optimized finite element modeling of mechanical interaction of concrete with fiber reinforced polymer", Comput. Concrete, 23, 61-68. https://doi.org/10.12989/cac.2019.23.1.061.   DOI
111 Pearson, K. (1895), "Note on Regression and Inheritance in the Case of Two Parents", Proceedings of the Royal Society of London, 58, 240-242. https://doi.org/10.1098/rspl.1895.0041.   DOI
112 Ali, F. and McKinney, J. (2014), "Artificial Neural Networks for the Spalling Classification & Failure Prediction Times of High Strength Concrete Columns", Fire Eng., 5, 203-214. https://doi.org/10.1260/2040-2317.5.3.203.   DOI
113 Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integrity, 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.   DOI
114 Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, MG., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167, https://doi.org/10.1016/j.cemconres.2020.106167.   DOI
115 Le, M.V., Yvonnet, J., Feld, N. and Detrez, F. (2020), "The Coarse Mesh Condensation Multiscale Method for parallel computation of heterogeneous linear structures without scale separation", Comput. Method. Appl. M., 363, 112877. https://doi.org/10.1016/j.cma.2020.112877.   DOI
116 Aqil, M., Kita, I., Yano, A. and Nishiyama, S. (2007), "A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff", J. Hydrology, 337, 22-34. https://doi.org/10.1016/j.jhydrol.2007.01.013.   DOI
117 Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, C., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019). "Soft computing-based techniques for concrete beams shear strength", Procedia Struct. Integrity, 17, 924-933.   DOI
118 Armaghani, D.J. and Asteris, P.G. (2020), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., https://doi.org/10.1007/s00521-020-05244-4.   DOI
119 Asgari, M., Babaee, A. and Jamshidi, M. (2018), "Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies", Steel Compos. Struct., 27(4), 427-438. https://doi.org/10.12989/Scs.2018.27.4.427.   DOI
120 Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019b). "Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks", Comput. Concrete, 24, 469-488. https://doi.org/10.12989/cac.2019.24.5.469.   DOI
121 Battiti, R. (1992), "First- and Second-Order Methods for Learning: Between Steepest Descent and Newton's Method", Neural Comput., 4, 141-166. https://doi.org/10.1162/neco.1992.4.2.141.   DOI
122 Gupta, R., Gijzen van, M.B. and Vuik, C.K. (2013), "Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU", Proceedings of the High Performance Computing for Computational Science - VECPAR 2012, (Eds., O. Marques M. Dayde and K.) Nakajima. https://doi.org/10.1007/978-3-642-38718-0_7.
123 Ly, H., Pham, B.T., Le, L.M., Tien-Thinh Le, T.T., Le, V.M. and Asteris, P.G. (2020), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., https://doi.org/10.1007/s00521-020-05214-w.   DOI
124 Asteris, P.G. and Mokos, V.G. (2019), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 32, 11807. https://doi.org/10.1007/s00521-019-04663-2.   DOI
125 Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Behaviour and design of composite columns incorporating compact high-strength steel plates", J. Constr. Steel Res., 107, 94-110. https://doi.org/10.1016/j.jcsr.2015.01.005.   DOI
126 Asteris, P.G. and Nikoo, M. (2019), "Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures", Neural Comput. Appl., 31, 4837-4847. https://doi.org/10.1007/s00521-018-03965-1.   DOI
127 Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019a). "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24, 329-345.   DOI
128 Asteris, P.G., Moropoulou, A., Skentou, A.D., Apostolopoulou, M., Mohebkhah, A., Cavaleri, L., Rodrigues, H. and Varum, H. (2019c), "Stochastic vulnerability assessment of masonry structures: concepts modeling and restoration aspects", Appl. Sci., 9, 243.   DOI
129 Baig, M.N., Fan, J. and Nie, J. (2006), "Strength of concrete filled steel tubular columns", Tsinghua Sci. Technol., 11, 657-666.   DOI
130 Brownlee, J. (2016), Master Machine Learning Algorithms: Discover How They Work and Implement Them From Scratch, Machine Learning Mastery.
131 Staber, B., Guilleminot, J., Soize, C., Michopoulos, J. and Iliopoulos, A. (2019), "Stochastic modeling and identification of a hyperelastic constitutive model for laminated composites", Comput. Method. Appl. M., 347, 425-444. https://doi.org/10.1016/j.cma.2018.12.036.   DOI
132 Bayat, M., Ghorbanpour, M., Zare, R., Jaafari, A. and Pham, B.T. (2019), "Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran", Comput. Electron. Agricult., 164, 104929. https://doi.org/10.1016/j.compag.2019.104929.   DOI
133 Behnam, A. and Esfahani, M.R. (2018), "Prediction of biaxial bending behavior of steel-concrete composite beam-columns by artificial neural network", Iran Univ. Sci. Technol., 8, 381-399.
134 Fong, M., Chan, S.L. and Uy, B. (2011). "Advanced design for trusses of steel and concrete-filled tubular sections", Engineering Structures, 33, 3162-3171. https://doi.org/10.1016/j.engstruct.2011.08.002.   DOI
135 Tang, C.W. (2017), "Fire resistance of high strength fiber reinforced concrete filled box columns", Steel Compos. Struct., 23(5), 611-621. https://doi.org/10.12989/SCS.2017.23.5.611.   DOI
136 Tao, Z., Han, L.H. and Wang, D.Y. (2007), "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin-Wall. Struct., 45, 517-527. https://doi.org/10.1016/j.tws.2007.04.003.   DOI
137 Tao, Z., Song, T.Y., Uy, B. and Han, L.H. (2016). "Bond behavior in concrete-filled steel tubes", J. Constr. Steel Res., 120, 81-93.   DOI
138 Taylor, R. (1990), "Interpretation of the Correlation Coefficient: A Basic Review", J. Diagnostic Medical Sonography, 6, 35-39. https://doi.org/10.1177/875647939000600106.   DOI
139 Tao, Z., Brian, U.Y., Han, L.H. and He, S.H. (2008), "Design of concrete-filled steel tubular members according to the Australian Standard AS 5100 model and calibration", Australian J. Struct. Eng., 8, 197-214.   DOI
140 Taormina, R., Chau, K. and Sethi, R. (2012), "Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon", Eng. Appl. Artif. Intel., 25, 1670-1676. https://doi.org/10.1016/j.engappai.2012.02.009.   DOI
141 Tomii, M. and Sakino, K. (1979), "Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns", T. Architect. Inst. Japan, 55-65.
142 Tran, V.L., Thai, D.K. and Kim, S.E. (2019), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332.   DOI
143 Tran, V.P., Brisard, S., Guilleminot, J. and Sab, K. (2018), "Mori-Tanaka estimates of the effective elastic properties of stress-gradient composites", Int. J. Solid. Struct., 146, 55-68. https://doi.org/10.1016/j.ijsolstr.2018.03.020.   DOI