Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.1.049

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration  

Cao, Liyuan (Department of Civil Engineering, Shanghai University)
Li, Chunxiang (Department of Civil Engineering, Shanghai University)
Chen, Xu (Department of Civil Engineering, Shanghai University)
Publication Information
Smart Structures and Systems / v.26, no.1, 2020 , pp. 49-61 More about this Journal
Abstract
This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.
Keywords
high performance; dynamic magnification factors; optimization; structural vibration control; multiple tuned mass dampers-inerter; ground acceleration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jokic, M., Stegic, M. and Butkovic, M. (2011), "Reduced-order multiple tuned mass damper optimization: A bounded real lemma for descriptor systems approach", J. Sound Vib., 330 (22), 5259-5268. https://doi.org/10.1016/j.jsv.2011.06.005   DOI
2 Krenk, S. and Hogsberg, J.B. (2016), "Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction", Proc. R. Soc. A, 472(2185), 20150718. https://doi.org/10.1098/rspa.2015.0718   DOI
3 Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerterbased device for structural vibration suppression", Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390   DOI
4 Li, C. (2000), "Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration", Earthq. Eng. Struct. Dyn., 29(9), 1405-1421. https://doi.org/10.1002/1096-9845(200009)29:9<1405::AID-EQE976>3.0.CO;2-4   DOI
5 Chung, L.-L., Wu, L.-Y., Yang, C.-S.W., Lien, K.-H., Lin, M.-C. and Huang, H.-H. (2013), "Optimal design formulas for viscous tuned mass dampers in wind-excited structures", Struct. Control Health Monit., 20(3), 320-336. https://doi.org/10.1002/stc.496   DOI
6 Daniel, Y. and Lavan, O. (2014), "Gradient based optimal seismic retrofitting of 3D irregular buildings using multiple tuned mass dampers", Comput. Struct., 139, 84-97. https://doi.org/10.1016/j.compstruc.2014.03.002   DOI
7 Daniel, Y., Lavan, O. and Levy, R. (2012), "Multiple-tuned mass dampers for multimodal control of pedestrian bridges", J. Struct. Eng. ASCE, 138(9), 1173-1178. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000527   DOI
8 De Domenico, D. and Ricciardi, G. (2018a), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011   DOI
9 De Domenico, D. and Ricciardi G. (2018b), "Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: A comparative study", Struct. Control Health Monit., 25, e2234. https://doi.org/10.1002/stc.2234   DOI
10 De Domenico, D. and Ricciardi, G. (2018c), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. Dyn., 47(12), 2539-2560. https://doi.org/10.1002/eqe.3098   DOI
11 De Domenico, D., Impollonia, N. and Ricciardi, G. (2018), "Soildependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper", Soil Dyn. Earthq. Eng., 105, 37-53. https://doi.org/10.1016/j.soildyn.2017.11.023   DOI
12 Dehghan-Niri, E., Zahrai, S.M. and Mohtat, A. (2010), "Effectiveness-robustness objectives in MTMD system design: An evolutionary optimal design methodology", Struct. Control Health Monit., 17, 218-236. https://doi.org/10.1002/stc.297   DOI
13 Lin, C.-C., Wang, J.-F., Lien, C.-H., Chiang, H.-W. and Lin, C.-S. (2010), "Optimum design and experimental study of multiple tuned mass dampers with limited stroke", Earthq. Eng. Struct. Dyn., 39(14), 1631-1651. https://doi.org/10.1002/eqe.1008   DOI
14 Li, C. (2002), "Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF", Earthq. Eng. Struct. Dyn., 31(4), 897-919. https://doi.org/10.1002/eqe.128   DOI
15 Li, C. and Liu, Y. (2003), "Optimum multiple tuned mass dampers for structures under ground acceleration based on the uniform distribution of system parameters", Earthq. Eng. Struct. Dyn., 32(5), 671-690. https://doi.org/10.1002/eqe.239   DOI
16 Li, H.-N. and Ni, X.-L. (2007), "Optimization of non-uniformly distributed multiple tuned mass damper", J. Sound Vib., 308(1-2), 80-97. https://doi.org/10.1016/j.jsv.2007.07.014   DOI
17 Wang, F., Hong, M. and Lin, T. (2010), "Designing and testing a hydraulic inerter", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 225(1), 66-72. https://doi.org/10.1243/09544062JMES2199   DOI
18 Takehiko, A., Yoshikazu, A. and Kohju, I. (2018), "Structural control with tuned inertial mass electromagnetic transducers", Struct. Control Health Monit., 25, e2059. https://doi.org/10.1002/stc.2059   DOI
19 Tong, X. and Zhao, X. (2018), "Passive vibration control of the SCOLE beam system", Struct. Control Health Monit., 25, e2204. https://doi.org/10.1002/stc.2204   DOI
20 Wang, J.F., Lin, C.C. and Chen, B.L. (2005), "Vibration suppression for high-speed railway bridges using tuned mass dampers", Int. J. Solids Struct., 42(2), 465-491. https://doi.org/10.1016/S0020-7683(02)00589-9
21 Wen, Y., Chen, Z. and Hua, X. (2017), "Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures", J. Struct. Eng. ASCE, 143(4), 04016207. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001680   DOI
22 Xu, K., Bi, K., Han, Q., Li, X. and Du, X. (2019), "Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study", Eng. Struct., 182, 101-111. https://doi.org/10.1016/j.engstruct.2018.12.067   DOI
23 Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020   DOI
24 Zuo, H., Bi, K. and Hao, H. (2017), "Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards", Eng. Struct., 141, 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006   DOI
25 Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044   DOI
26 Dinh, V.-N. and Basu, B. (2015), "Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers", Struct. Control Health Monit., 22, 152-176. https://doi.org/10.1002/stc.1666   DOI
27 Fadel Miguel, L.F., Lopez, R.H., Miguel, L.F.F. and Torii, A.J. (2016), "A novel approach to the optimum design of MTMDs under seismic excitations", Struct. Control Health Monit., 23(11), 1290-1313. https://doi.org/10.1002/stc.1845   DOI
28 Fu, T.S. and Johnson, E.A. (2011), "Distributed mass damper system for integrating structural and environmental controls in buildings", J. Eng. Mech. ASCE, 137(3), 205-213. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000211   DOI
29 Giaralis, A. and Petrini, F. (2017), "Wind-induced vibration mitigation in tall buildings using the tuned mass-damperinerter", J. Struct. Eng. ASCE, 143(9), 04017127. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001863   DOI
30 Giaralis, A. and Taflanidis, A.A. (2018), "Optimal tuned massdamper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria", Struct. Control Health Monit., 25, e2082. https://doi.org/10.1002/stc.2082   DOI
31 Gonzalez-Buelga, A., Clare, L.R., Neild, S.A, Jiang, J.Z. and Inman, D.J. (2015), "An electromagnetic inerter-based vibration suppression device", Smart Mater. Struct., 24(5), 055015. https://doi.org/10.1088/0964-1726/24/5/055015   DOI
32 Ma, R., Bi, K. and Hao, H. (2018), "Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI)", Eng. Struct., 177, 357-373. https://doi.org/10.1016/j.engstruct.2018.09.085   DOI
33 Lin, C.-C., Lin, G.-L. and Chiu, K.-C. (2017), "Robust design strategy for multiple tuned mass dampers with consideration of frequency bandwidth", Int. J. Struct. Stab. Dyn., 17(1), 1750002. https://doi.org/10.1142/S021945541750002X   DOI
34 Liu, X., Jiang, J.Z., Titurus, B. and Harrison, A. (2018), "Model identification methodology for fluid-based inerters", Mech. Syst. Signal Process., 106, 479-494. https://doi.org/10.1016/j.ymssp.2018.01.018   DOI
35 Lu, X., Zhang, Qi, Weng, D., Zhou, Z., Wang, S., Mahin, S.A., Ding, S. and Qian, F. (2017), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Health Monit., 24(3), e1882. https://doi.org/10.1002/stc.1882   DOI
36 Mohebbi, M., Shakeri, K., Ghanbarpour, Y. and Majzoub, H. (2013), "Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures", J. Vib. Control, 19(4), 605-625. https://doi.org/10.1177/1077546311434520   DOI
37 Han, B. and Li, C. (2008), "Characteristics of linearly distributed parameter-based multiple-tuned mass dampers", Struct. Control Health Monit., 15(6), 839-856. https://doi.org/10.1002/stc.222   DOI
38 Ma, R., Bi, K. and Hao, H. (2019), "A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea", Struct. Control Health Monit., 26, e2368. https://doi.org/10.1002/stc.2368
39 Makris, N. and Kampas, G. (2016), "Seismic protection of structures with supplemental rotational inertia", J. Eng. Mech. ASCE, 142(11), 04016089. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001152   DOI
40 Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabilistic Eng. Mech., 38, 156-164. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001152   DOI
41 Hu, Y., Wang, J., Chen, M.Z.Q., Li, Z.H. and Sun, Y. (2018), "Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control", Eng. Struct., 177, 198-209. https://doi.org/10.1016/j.engstruct.2018.09.063   DOI
42 Hessabi, R.M. and Mercan, O. (2016), "Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures", Eng. Struct., 126, 174-186. https://doi.org/10.1016/j.engstruct.2016.07.045   DOI
43 Hoang, N. and Warnitchai, P. (2005), "Design of multiple tuned mass dampers by using a numerical optimizer", Earthq. Eng. Struct. Dyn., 34(2), 125-144. https://doi.org/10.1002/eqe.413   DOI
44 Hu, Y.L., Chen, M.Z.Q., Shu, Z. and Huang, L.X. (2015), "Analysis and optimisation for inerter-based isolators via fixedpoint theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041   DOI
45 Hwang, J.-S., Kim, J. and Kim, Y-M. (2007), "Rotational inertia dampers with toggle bracing for vibration control of a building structure", Eng. Struct., 29, 1201-1208. https://doi.org/10.1016/j.engstruct.2006.08.005   DOI
46 Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://doi.org/10.1002/eqe.1138   DOI
47 Jangid, R.S. (1995), "Dynamic characteristics of structures with multiple tuned mass dampers", Struct. Eng. Mech., Int. J., 3(5), 497-509. https://doi.org/10.12989/sem.1995.3.5.497   DOI
48 Jangid, R.S. (1999), "Optimum multiple tuned mass dampers for base-excited undamped system", Earthq. Eng. Struct. Dyn., 28(9), 1041-1049. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<1041::AID-EQE853>3.0.CO;2-E   DOI
49 Javidialesaadia, A. and Wierschemb, N.E. (2018), "Optimal design of rotational inertial double tuned mass dampers under random excitation", Eng. Struct., 165, 412-421. https://doi.org/10.1016/j.engstruct.2018.03.033   DOI
50 Nakamura, Y., Fukukita. A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. Dyn., 43(4), 507-527. https://doi.org/10.1002/eqe.2355   DOI
51 Anajafi, H. and Medina, R.A. (2018), "Comparison of the seismic performance of a partial mass isolation technique with conventional TMD and base-isolation systems under broad-band and narrow-band excitations", Eng. Struct., 158, 110-123. https://doi.org/10.1016/j.engstruct.2017.12.018   DOI
52 Bozer, A. and Ozsariyildiz, S.S. (2018), "Free parameter search of multiple tuned mass dampers by using artificial bee colony algorithm", Struct. Control Health Monit., 25(2), e2066. https://doi.or g/10.1002/stc.2066   DOI
53 Cao, L. and Li, C. (2019), "Tuned tandem mass dampers-inerters with broadband high effectiveness for structures under white noise base excitations", Struct. Control Health Monit., 26(4), e2319. https://doi.org/10.1002/stc.2319   DOI
54 Pan, C. and Zhang, R. (2018), "Design of structure with inerter system based on stochastic response mitigation ratio", Struct. Control Health Monit., 25(6), e2169. https://doi.org/10.1002/stc.2169   DOI
55 Pan, C., Zhang, R.F., Luo, H., Li, C. and Shen, H. (2018), "Demand-based optimal design of oscillator with parallel-layout viscous inerter damper", Struct. Control Health Monit., 25(1), e2051. https://doi.org/10.1002/stc.2051   DOI
56 Siami, A., Karimi, H.R., Cigada, A., Zappa, E. and Sabbioni, E. (2018), "Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pieta", Mech. Syst. Signal Process, 98, 667-683. https://doi.org/10.1016/j.ymssp.2017.05.030   DOI
57 Papadimitriou, C., Katafygiotis, L. and Au, S.K. (1997), "Effects of structural uncertainties on TMD design: A reliability-based approach", Struct. Struct Control Health Monit., 4(1), 65-88. https://doi.org/10.1002/stc.4300040108
58 Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. https://doi.org/10.1002/eqe.2861   DOI
59 Ruiz, R., Taflanidis, A.A., Giaralis, A. and Lopez-Garcia, D. (2018), "Risk-informed optimization of the tuned mass-damperinerter (TMDI) for the seismic protection of multi-storey building structures", Eng. Struct., 177, 836-850. https://doi.org/10.1016/j.engstruct.2018.08.074   DOI
60 Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", IEEE Trans. Autom. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532   DOI