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In this paper, we propose an efficient design method for 
area optimization in a digital filter. The conventional 
methods to reduce the number of adders in a filter have 
the problem of a long critical path delay caused by the 
deep logic depth of the filter due to adder sharing. 
Furthermore, there is such a disadvantage that they use 
the transposed direct form (TDF) filter which needs more 
registers than those of the direct form (DF) filter. In this 
paper, we present a hybrid structure of a TDF and DF 
based on the flattened coefficients method so that it can 
reduce the number of flip-flops and full-adders without 
additional critical path delay. We also propose a resource 
sharing method and sharing-pattern searching algorithm 
to reduce the number of adders without deepening the 
logic depth. Simulation results show that the proposed 
structure can save the number of adders and registers by 
22 and 26%, respectively, compared to the best one used 
in the past. 
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I. Introduction 

The multiplication of a variable by a set of constants is a 
central operation in video processing, digital television, data 
transmission, and wireless communications. The area-time 
optimization of this operation has often been accomplished by 
using a shift-and-add multiplication algorithm, combined with 
techniques to reduce the number of nonzero bits in the binary 
representation of the coefficients. For example, a signed-digit 
code was efficiently applied in [1], [2]. 

Generally, a finite impulse response filter is separated into 
two kinds of structures. One is the direct form (DF) and the 
other is the transposed direct form (TDF). The DF filter 
requires the adder to have as many operands as the number of 
filter taps, and it gives rise to very long propagation delays. On 
the other hand, a TDF structure forms a short critical path, but it 
has a drawback in that it needs many registers. A DF structure 
is suitable for the implementation on a digital signal processor 
which has a multiplication and accumulation function, while 
the TDF is mainly applied to an application specific integrated 
circuit for high speed processing.  

This multiplication part of the TDF filter can be simplified as it 
is a multiplication between the identical input and the fixed 
coefficients. In order to simplify this part, many researches such 
as a multiplier block [3], [4] and common sub expression [5], [6] 
have been pursued. In the field of digital filter design, while there 
are a lot of research efforts to reduce the number of adders, few 
efforts have been taken to reduce the number of registers. Only a 
truncation or round-off has been used, but each of these methods 
inevitably causes a round-off error.  

The purpose of this paper is to design a new digital filter that 
uses the flattened-coefficients method to keep the critical path 
delay similar to the TDF filter and reduces the filter area by 
minimizing the number of both adders and registers without a 
round-off error. 
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The remainder of this paper is organized as follows. Section 
II explains the flattened coefficients method. Sections III to V 
describe the finite impulse response filter design method of the 
proposed structure. Section V shows a pattern searching 
algorithm. Section VI shows simulation results that compare 
the number of full-adders and flip-flops with the conventional 
method. Section VII contains the conclusion of this paper.  

II. Flattened-Coefficients Method 

In general, the logic depth of the critical path in a filter is 
determined by the maximum number of non-zero terms 
(NZTs) of each coefficient. The ‘maximum’ number can be 
changed into the ‘average’ number using the flattened 
coefficients method [7], which makes it possible to improve the 
characteristics of a filter while maintaining the critical path 
delay. The number of flip-flops can be reduced in the middle of 
the TDF and DF using the flattened coefficients method. 

Figure 1 shows an example where the numbers of NZTs are 1, 
5, and 2, and the critical path is formed along the arrow. At this 

 
 

Fig. 1. Critical path of a filter. 

C0 : 000001000
C1 : 101010101
C2 : 001000001

Level 1

Level 2

Level 3

Where ‘<<n’ means n bit shift left 

Y

<<3 

Critcal path 

X <<6 <<2 <<2 

<<4 

<<2 

+ + - 

+ 

+ 

z-1 + z-1 z-1 + 

 
 

 

Fig. 2. Pipeline structure of the filter. 
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moment, if it is necessary to shorten the critical path length, two 
kinds of methods can be considered. One, described in Fig. 2, 
makes a pipeline structure by inserting registers into the wanted 
level, while another, shown in Fig. 3, reconstructs it in order to 
ignore some adders on the critical path. 

However, these methods have some drawbacks such that 
either additional registers are required or the characteristics of 
the filter worsen. Also, since these methods basically use the 
TDF, they demand more flip-flops than in the DF. 

 
 

Fig. 3. Deleted NZT structure of the filter. 
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The flattened-coefficients method can solve the above 
problems using the following theorems and definitions. 

In general, a digital filer can be represented as 

∑
−

=
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where Yn is the n-th output, Xn is the n-th input and Ci is the i-th 
coefficient. Because the hardware uses only values stored in 
the registers and inputs received at that time, a relative position 
in the input sequence is more important than an absolute 
position. Therefore, the definition below is necessary to 
implement (1) to hardware. 

Definition: 
X0 : input value at time n, which is equal to Xn 
X-k: input value delayed k times by register  
Y : filter output value at time n, which is equal to Yn 

AZ-k: some value ‘A’ delayed k times by accumulation 
register, where k is an integer 

By the definition, the following theorems are valid. 

Theorem 1. 
X-n = X0 Z-n,   where n is an integer. 

 
Proof. We proceed by induction on n. If n = 0, then the result 
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is obvious. In this case, both values in either side of ‘=’ 
represent the current input which is not delayed by the register 
at all. Assume then that X-(n-1) = X0Z-(n-1). The TDF and DF filter 
outputs can be represented as (2) and (3), respectively, by 
definition.  

.
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From our definition, X0, X-1, …, X-(n-1) can be derived as  
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If the number of filter taps is increased by 1, (2) and (3) can be 
modified to (5) and (6).  
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With (4) through (6), X-n = X0Z-n can be derived because filter 
outputs from the TDF and DF filters are identical.            

Theorem 2. 
X-n=X-kZ-(n-k)  where n and k are integers and n ≥ k. 

Proof. Theorem 2 is a general form of theorem 1. As 
X-k =X0Z-k is satisfied by theorem 1, theorem 2 can then be 
represented as X-n =X0Z-kZ-(n-k). Since AZ-k is the representation 
of the value A that is delayed k times through the register for 
accumulation, X0Z-kZ-(n-k) indicates that X0 is delayed by (n-k) 
times again after being delayed k times. The fact that X0Z-kZ-(n-k) 
is equal to X0Z-n means X0 is delayed n times through a register. 
The description above can be arranged as in (7). 
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If theorems 1 and 2 are applied to Fig. 1, (8) can be derived.  
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Figure 4 shows the filter implemented by (8). In Fig. 4, the 
logic depth is changed from level 3 to 2 which means a reduction 
of the critical path delay. Figure 5 shows a comparison between 
the conventional TDF filter, seen in Fig. 1, and the modified filter 
using the flattened coefficients method shown in Fig. 4. As 
depicted in Fig. 5, the register for storing the intermediate 
accumulation value, defined by the register of accumulation 
(RA), is changed to the one for delaying the input value, input 
register (IR). Also, the accumulation adder (AA) is changed to 
the adder for the summation of delayed inputs (AI). Since the 
RA stores an intermediate accumulation value of the 
multiplication between the coefficients and inputs, it requires 
longer register bits than the IR does. Furthermore, the AA has 
more bit lengths than the AI does. This is because the AA adds 
large-bit multiplication values between the coefficients and 
inputs, while the AI adds two small-bit inputs. Therefore, if a 
filter is changed by the flattened coefficients method, hardware 
complexity can be reduced because the number of both full-
adders and flip-flops are decreased.  
 

 

Fig. 4. Modified filter using the flattened coefficients method.
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III. Pattern Searching for Adder Sharing  

1. Adder Sharing 

It is important that the number of adders and registers should 
be decreased to reduce the hardware area of a filter. In the 
previous section, the method to reduce the number of full-adders 
and flip-flops is explained. This section introduces an algorithm 
to reduce the number of adders by an adder sharing method. 



548   Sang-Hun Yoon et al. ETRI Journal, Volume 26, Number 6, December 2004 

 

Fig. 5. Comparison between Figs. 1 and 4. 
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Since the conventional TDF filter has a characteristic where 

the current input multiplies with each fixed coefficient, the 
multiplier block method [3], [4] can be used for adder sharing. 
However such adder-sharing methods can not be applied to the 
flattened coefficients method because the conventional filter 
takes the same input for the multiplication with each coefficient 
while the flattened coefficients method uses differently delayed 
inputs. Therefore, a new adder sharing structure is necessary for 
the flattened coefficients method. 

For example, we assume that the coefficients are converted into 
a canonical signed digit form by quantization, as in (9). Equation 
(10) shows that every four NZTs of the coefficient are recombined 
and rearranged in order that the deepest logic depth becomes two 
adder levels. Equation (11) can be derived by factorization. 
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Fig. 7. A second example of an adder-shared structure. 
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Figure 6(a) can be modified to Fig. 6(b) by (11). Figure 6(c) 

shows the coefficients represented by CSD format. In Fig. 6(c), 
the small circles ranging from C0 to C1 represent two NZT 
pairs which can share one adder, as in Fig. 6(b), and the pattern 
shapes of the two NZT pairs are the same. In the same manner, 
two big circles on C0, C1, C2 and C3 show that the shared part 
of the three adders and pattern shapes of the NZT in each circle 
are the same. The searching for NZTs that can share adders can 
be accomplished using the pattern searching of the same shape 
in the coefficients matrix, as shown in Fig. 6(c) as well as in the 
factorization of (11). If the RAGn algorithm [3] is used to 
construct this example, the structure in Fig. 6(d) can be made. 
In this case, because two accumulation adders are reduced, the 
proposed adder sharing method can save one more adder than 
a conventional one, although one more adder for the multiplier 
block is needed. Adders can be shared in adder levels 1 and 2. 
We define adder sharing types I, II, III as the cases when adders 
can be shared in level 1 and level 2 at the same time, only in 
level 2, and only in level 1, respectively. 

For another example, let’s assume that the coefficients are 
calculated as  
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The proposed architecture and the best structure in terms of 
adder cost and logic depth among RAGn [3], BHM [4] , 
SLBHM [8], and C1 algorithm [9] for (12) are presented in 
Figs. 7(a) and 7(b), respectively. This example shows that the 
proposed algorithm can reduce the logic depth of the filter as 

well as the number of maximum fanouts. 

IV. Positioning of the Shared Adders  

In the previous sections, we described a method to share 
hardware resources. In this subsection, the methods for 
positioning the multiplication results between the inputs and 
coefficients are discussed. The positioning is defined as the 
process of controlling n and k in Theorem 2. It is a matter of 
course, but it can be overlooked. For example,  
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Here, (13) shows that the inputs delayed one, two, three, and 
four times are summed up, and the result is then delayed five 
times again. It provides an equal result with the summation of 
six, seven, eight, and nine times the delayed values. Also, the 
results of (14) and (15) are the same as the summation of six, 
seven, eight, and nine times the delayed values. Figure 8 shows 
the filter architecture implemented by (14) and (15). 

One thing that has to be carefully controlled here is that the 
distance among the shared adders must be maintained. Figure 
9(a) shows the case where the distance among the shared adders 
is 2. This distance has to be kept even if the accumulation 
position on the filter is changed as in Fig. 9(b). 

The shaded circle in Fig. 10 illustrates an overlapping of the 
accumulation position as a result of positioning. In this case, the 
adder with three operands should be used for the accumulation. 
However, this causes an increase in the critical path delay. 
Therefore, to solve this problem, one of the overlapped adders 
can be moved to a collision free location, as shown in Fig. 11. 
In summary, for implementation of the proposed filter, it is  



550   Sang-Hun Yoon et al. ETRI Journal, Volume 26, Number 6, December 2004 

 

Fig. 8. Filter with the same results. 
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Fig. 9. The number of accumulation registers between shared patterns. 
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necessary to conduct a two-step process. The first step is the 
pattern searching for adder sharing as described in section III, 
and the second is the positioning process so as not to overlap 
the position of the shared adder as illustrated in section IV. 

V. Sharing-Pattern Searching Algorithm 

Finding optimally shared patterns using the proposed method 
is confronted by a non-polynomial (NP) problem. Therefore, we 
have adopted a sub-optimal algorithm for the proposed method 
which searches patterns using a sharing probability to resolve the 
NP problem. 

Step 1. Load coefficients to Coeff_Orig[][] 
Step 2. Change coefficients from binary to canonical signed 

digit 
Step 3. Initialize temporal matrices Coeff_Remained[][] = 

Coeff_Orig[][] 
Step 4. Search all two_term patterns and count the appearance 

in Coeff_Remained[][] for each patterns. 
Step 5. Sort two_term patterns by the number of appearance. 
Step 6. For I = 1 : number of different two_term patterns 

Search four_term patterns with sorted two_ term 
patterns and count the appearance in 
Coeff_Remained[][] for each patterns : 
UsedForTermNum 

Step 7. Delete four_term patterns which have maximum 
UsedFourTermNum from Coeff_Remained[][] 

Step 8. If UsedFourTermNum > 1 goto Step 4 else goto Step 9 
Step 9. Search two_term patterns and count the appearance 

in Coeff_Remained[][] for each patterns : 
UsedTwoTermNum. 

Step 10. Delete two_term patterns which have maximum 
UsedTwoTermNum from Coeff_Remained[][] 

Step 11. If maximum UsedTwoTermNum > 1 goto Step 9 
else goto Step 12 

Step 12. Construct filter 

VI. Experimental Results 

1. Design Example 

In order to verify the performance of the proposed filter, the 
specifications in Table 1 are used and its coefficients are 
generated using MATLAB™. Four methods are implemented 
and compared; the multiplier block [3], [4], shared common 
subexpression [5], [6], Step-Limiting RAGn [8], and the 
proposed structure. Figure 12 and equation (16) show the 
frequency response of the filter and the filter coefficients, 
respectively. 

Table 1. Specification of the designed filter. 

No. of filter taps 48 

Edge frequency 0.075, 0.125 

Coefficient bits 10 bit 

Stopband ripple -41.9 dB 

Total no. of nonzero terms 94 

No. of input bits 8 bit 

No. of accumulation bits 19 bit 

 

 

Fig. 12. Frequency response of the designed filter. 
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Since searching optimum patterns for adder sharing is a 
combinatorial NP hard problem, the process of searching for 
optimum patterns consumes too much computing time. In this 
paper, we used the heuristic method to get an optimal filter. 

2. Design Results 

Figure 13 shows the block diagram of the proposed filter  
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Fig. 13. Block diagram of the designed filter. 
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which consists of an input delay, make_pattern_2, 
make_pattern_4, and accumulation block. The input delay and 
accumulation block are the parts used to delay input X and the 
accumulation value through the registers, respectively. The 
make_pattern_2 block adds/subtracts two delayed inputs. The 
make_pattern_4 block adds/subtracts two outputs from the 
make_pattern_2 block. 

Since we assumed that the number of input bits of the filter 
designed in this section is 8, a 9-bit adder, illustrated in Figs. 
14(a) and 14(b), is necessary to add the two delayed and/or 
shifted inputs. This results in 9- to 16-bit data. To calculate the 
level 2 additions in Fig. 14(a), 10- to 17-bit adders are necessary, 
as shown in Fig. 14(c), which is proved by the simulation of 19-bit  
 

 

Fig. 14. Adder bits in each level. 
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operations that are needed in the accumulation of intermediate 
data. As described above, the adders in each level have a 
different number of bits. Also, the IR and RA have a different 
number of flip-flops. Therefore, if the algorithm is compared by 
only the number of adders or registers, the correct outcome 
cannot be derived. As a result, this paper compares not only the 
number of adders and registers but also the total number of bits 
for the adder and register. 

Table 2 shows the results of the filters structured by the  

Table 2. Comparison of filter resources. 

RAGn BHM SLRAGn Proposed 
 

No. Total bits No. Total bits No. Total bits No. Total bits

level 1 5 45 5 45 5 45 21 189 

level 2 6 84 4 56 6 56 12 168 

level 3 0 0 2 28 0 0 0 0 

accumulator 47 893 47 893 47 893 23 437 

Adder 

total 58 1022 58 1022 58 1022 56 794 

input 0 0 0 0 0 0 27 216 

accumulator 48 912 48 912 48 912 24 456 Register 

total 48 912 48 912 48 912 51 672 
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multiplier block (RAGn) [3], BHM [4], Step-Limiting RAGn 
(SLRAGn) [8], and the proposed structure. ‘No.’ and ‘total bits’ 
represent the number of adders or registers and the total number 
of bits in each design, respectively. In level 2 from Table 2, the 
number of total bits, 84, can be calculated by 14 × 6, since the 
average number of adder bits in level 2 is 14; 10- to 17-bit adders 
are used, as shown in Fig. 14(c). By the proposed structure, some 
adders in an accumulation block are transformed to either level 1 
or level 2, and from the RA to the IR. In conclusion, our method 
can accomplish more than a 26% and 22% reduction in the 
number of flip-flops and full-adders, respectively, compared to 
conventional methods. 

Table 3 shows the synthesis results to prove Table 2 using 
the LSI10k library with Synopsys™ DesignAnalyzer. It 
demonstrates the benefits of the proposed structure including 
large reductions in the critical path delay.  
 

Table 3. Synthesized results of the filter in Table 1. 

 RAGn SCSE SLRAGn Proposed

Combinational logic 7,528 7,868 7,530 6,268

Sequential logic 8,208 8,208 8,208 6,291

Total area 15,736 16,076 15,738 12,559

Critical path delay 50.29 29.59 49.28 29.15

 
 

Table 4 shows the design results of another two examples, 
from which our method turns out to be excellent in both 
hardware areas and in the critical path delay. 
 

Table 4. Other design examples. 

Filter spec. Algorithm Tot. adder bits Tot. reg. bits Logic depth
RAGn 490 450 2 

SCSE 502 450 2 

SLRAGn 490 450 2 

T=25 
N=9 

NZT= 45 
Proposed 397 318 2 

RAGn 1,736 1,416 3 

SCSE 1,760 1,416 2 

SLRAGn 1,788 1,416 2 

T=59 
N=14 

NZT = 170 
proposed 1,644 1,360 2 

 

 

VII. Conclusion  

In this paper, we proposed a new method to reduce both the 
number of registers and adders which occupy most of the area in 

a digital filter. The proposed method made it possible to predict 
the critical path delay and transform a TDF partially into a DF 
filter. A new adder sharing method has been introduced. As a 
result, the number of flip-flops and full-adders were decreased. 
In this paper, the algorithm to obtain the optimal result is not used. 
Therefore, we cannot assert that the results obtained by the 
proposed method are always the most suitable ones. If the 
searching and positioning algorithm that is able to find the 
optimal result is used, the performance will improve. Researches 
to find the algorithms for the optimal solution are being 
conducted. 
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