
ETRI Journal, Volume 26, Number 6, December 2004 Sang-Hun Yoon et al. 545

In this paper, we propose an efficient design method for
area optimization in a digital filter. The conventional
methods to reduce the number of adders in a filter have
the problem of a long critical path delay caused by the
deep logic depth of the filter due to adder sharing.
Furthermore, there is such a disadvantage that they use
the transposed direct form (TDF) filter which needs more
registers than those of the direct form (DF) filter. In this
paper, we present a hybrid structure of a TDF and DF
based on the flattened coefficients method so that it can
reduce the number of flip-flops and full-adders without
additional critical path delay. We also propose a resource
sharing method and sharing-pattern searching algorithm
to reduce the number of adders without deepening the
logic depth. Simulation results show that the proposed
structure can save the number of adders and registers by
22 and 26%, respectively, compared to the best one used
in the past.

Keywords: Digital filter, flattened coefficient, adder
sharing, architecture.

Manuscript received Feb. 25, 2004.
This work was supported by the research fund of Hanyang University (HY-2003-T).
Sang-Hun Yoon (phone: +82 2 2290 0558, email: shyoon11@ihanyang.ac.kr) and Jong-

Wha Chong (email: jchong@hanyang.ac.kr) are with the Department of Electronic
Engineering, Hanyang University, Seoul, Korea.

Chi-Ho Lin (email: ich410@semyung.ac.kr) is with the Department of Computer Science,
Semyung University, Jecheon, Korea.

I. Introduction

The multiplication of a variable by a set of constants is a
central operation in video processing, digital television, data
transmission, and wireless communications. The area-time
optimization of this operation has often been accomplished by
using a shift-and-add multiplication algorithm, combined with
techniques to reduce the number of nonzero bits in the binary
representation of the coefficients. For example, a signed-digit
code was efficiently applied in [1], [2].

Generally, a finite impulse response filter is separated into
two kinds of structures. One is the direct form (DF) and the
other is the transposed direct form (TDF). The DF filter
requires the adder to have as many operands as the number of
filter taps, and it gives rise to very long propagation delays. On
the other hand, a TDF structure forms a short critical path, but it
has a drawback in that it needs many registers. A DF structure
is suitable for the implementation on a digital signal processor
which has a multiplication and accumulation function, while
the TDF is mainly applied to an application specific integrated
circuit for high speed processing.

This multiplication part of the TDF filter can be simplified as it
is a multiplication between the identical input and the fixed
coefficients. In order to simplify this part, many researches such
as a multiplier block [3], [4] and common sub expression [5], [6]
have been pursued. In the field of digital filter design, while there
are a lot of research efforts to reduce the number of adders, few
efforts have been taken to reduce the number of registers. Only a
truncation or round-off has been used, but each of these methods
inevitably causes a round-off error.

The purpose of this paper is to design a new digital filter that
uses the flattened-coefficients method to keep the critical path
delay similar to the TDF filter and reduces the filter area by
minimizing the number of both adders and registers without a
round-off error.

An Area Optimization Method for Digital Filter Design

Sang-Hun Yoon, Jong-Wha Chong, and Chi-Ho Lin

546 Sang-Hun Yoon et al. ETRI Journal, Volume 26, Number 6, December 2004

The remainder of this paper is organized as follows. Section
II explains the flattened coefficients method. Sections III to V
describe the finite impulse response filter design method of the
proposed structure. Section V shows a pattern searching
algorithm. Section VI shows simulation results that compare
the number of full-adders and flip-flops with the conventional
method. Section VII contains the conclusion of this paper.

II. Flattened-Coefficients Method

In general, the logic depth of the critical path in a filter is
determined by the maximum number of non-zero terms
(NZTs) of each coefficient. The ‘maximum’ number can be
changed into the ‘average’ number using the flattened
coefficients method [7], which makes it possible to improve the
characteristics of a filter while maintaining the critical path
delay. The number of flip-flops can be reduced in the middle of
the TDF and DF using the flattened coefficients method.

Figure 1 shows an example where the numbers of NZTs are 1,
5, and 2, and the critical path is formed along the arrow. At this

Fig. 1. Critical path of a filter.

C0 : 000001000
C1 : 101010101
C2 : 001000001

Level 1

Level 2

Level 3

Where ‘<<n’ means n bit shift left

Y

<<3

Critcal path

X <<6 <<2 <<2

<<4

<<2

+ + -

+

+

z-1 + z-1 z-1 +

Fig. 2. Pipeline structure of the filter.

C0 : 000001000
C1 : 101010101
C2 : 001000001

Level 1

Level 2

Level 1

Where ‘<<n’ means n bit shift left

Y

<<3

Critcal path

X <<6 <<2 <<2

<<4

<<2

+ + -

+

+

z-1 + z-1 z-1 +

z-1 z-1 z-1 z-1

Critcal
path

moment, if it is necessary to shorten the critical path length, two
kinds of methods can be considered. One, described in Fig. 2,
makes a pipeline structure by inserting registers into the wanted
level, while another, shown in Fig. 3, reconstructs it in order to
ignore some adders on the critical path.

However, these methods have some drawbacks such that
either additional registers are required or the characteristics of
the filter worsen. Also, since these methods basically use the
TDF, they demand more flip-flops than in the DF.

Fig. 3. Deleted NZT structure of the filter.

C0 : 000001000
C1 : 101010100
C2 : 001000001

Level 1

Level 2

Level 3

Where ‘<<n’ means n bit shift left

Y

<<3

Critical path

X <<6 <<2 <<2

<<4

<<2

+ + -

+

+

z-1 - z-1 z-1 +

The flattened-coefficients method can solve the above
problems using the following theorems and definitions.

In general, a digital filer can be represented as

∑
−

=
−=

1

0
1

L

i
inn CXY , (1)

where Yn is the n-th output, Xn is the n-th input and Ci is the i-th
coefficient. Because the hardware uses only values stored in
the registers and inputs received at that time, a relative position
in the input sequence is more important than an absolute
position. Therefore, the definition below is necessary to
implement (1) to hardware.

Definition:
X0 : input value at time n, which is equal to Xn
X-k: input value delayed k times by register
Y : filter output value at time n, which is equal to Yn

AZ-k: some value ‘A’ delayed k times by accumulation
register, where k is an integer

By the definition, the following theorems are valid.

Theorem 1.
X-n = X0 Z-n, where n is an integer.

Proof. We proceed by induction on n. If n = 0, then the result

ETRI Journal, Volume 26, Number 6, December 2004 Sang-Hun Yoon et al. 547

is obvious. In this case, both values in either side of ‘=’
represent the current input which is not delayed by the register
at all. Assume then that X-(n-1) = X0Z-(n-1). The TDF and DF filter
outputs can be represented as (2) and (3), respectively, by
definition.

.

)))(((

0
01

1
0)2(

2
0)1(

1
0

0
01

1
011

2
01

1
0

CXZCXZCXZCX

CXZCXZZCXZCXY
n

n
n

n

nn

++++=

++++=
−−−

−
−−

−

−−−
−

−
−

(2)

1
)1(

2
)2(

1
1

0
0

−
−−

−
−−− ++++= n

n
n

n CXCXCXCXY . (3)

From our definition, X0, X-1, …, X-(n-1) can be derived as

)1(0)1(

)2(0)2(

101

00

,

,

,

−−−−

−−−−

−−

=

=

=

=

nn

nn

ZXX

ZXX

ZXX

XX

 (4)

If the number of filter taps is increased by 1, (2) and (3) can be
modified to (5) and (6).

.

)))(((

0
01

1
0)1(

1
00

0
01

1
011

1
010

CXZCXZCXZCX

CXZCXZZCXZCXY
n

n
n

n

nn

++++=

++++=
−−−

−
−

−−−
−

−

(5)

n
n

n
n CXCXCXCXY −

−
−−− ++++= 1

)1(
1

1
0

0 . (6)

With (4) through (6), X-n = X0Z-n can be derived because filter
outputs from the TDF and DF filters are identical.

Theorem 2.
X-n=X-kZ-(n-k) where n and k are integers and n ≥ k.

Proof. Theorem 2 is a general form of theorem 1. As
X-k =X0Z-k is satisfied by theorem 1, theorem 2 can then be
represented as X-n =X0Z-kZ-(n-k). Since AZ-k is the representation
of the value A that is delayed k times through the register for
accumulation, X0Z-kZ-(n-k) indicates that X0 is delayed by (n-k)
times again after being delayed k times. The fact that X0Z-kZ-(n-k)
is equal to X0Z-n means X0 is delayed n times through a register.
The description above can be arranged as in (7).

)()(0)(0

)(

knkknk

knkn

ZZXZZX

ZXX
−−−−−−

−−−−

==

=
 (7)

.0 nZX −=

If theorems 1 and 2 are applied to Fig. 1, (8) can be derived.

.)2222(

)2222(

)2222(

)2222(

...)22()22222()2(

110160002

14161803

20261012

14161803

20610246803

−−−

−−−

−−−−

−−−

−−

−−−−

+++=

+++−+

+++=

+++−+++=

ZXXXX

XXXX

XXXX

XXXX

XXXY

(8)

Figure 4 shows the filter implemented by (8). In Fig. 4, the
logic depth is changed from level 3 to 2 which means a reduction
of the critical path delay. Figure 5 shows a comparison between
the conventional TDF filter, seen in Fig. 1, and the modified filter
using the flattened coefficients method shown in Fig. 4. As
depicted in Fig. 5, the register for storing the intermediate
accumulation value, defined by the register of accumulation
(RA), is changed to the one for delaying the input value, input
register (IR). Also, the accumulation adder (AA) is changed to
the adder for the summation of delayed inputs (AI). Since the
RA stores an intermediate accumulation value of the
multiplication between the coefficients and inputs, it requires
longer register bits than the IR does. Furthermore, the AA has
more bit lengths than the AI does. This is because the AA adds
large-bit multiplication values between the coefficients and
inputs, while the AI adds two small-bit inputs. Therefore, if a
filter is changed by the flattened coefficients method, hardware
complexity can be reduced because the number of both full-
adders and flip-flops are decreased.

Fig. 4. Modified filter using the flattened coefficients method.

Level 1

Level 2

C0’

C1’

X0

z-1

X-1

z-1 z-1 +

+

+ + - +

-

<<2

<<6 <<8 <<6 <<4

<<3

Y

C0 : 000001000
C1 : 101010101
C2 : 001000001

C0’ : 000001000
101010000

C1’ : 000000101
001000001

III. Pattern Searching for Adder Sharing

1. Adder Sharing

It is important that the number of adders and registers should
be decreased to reduce the hardware area of a filter. In the
previous section, the method to reduce the number of full-adders
and flip-flops is explained. This section introduces an algorithm
to reduce the number of adders by an adder sharing method.

548 Sang-Hun Yoon et al. ETRI Journal, Volume 26, Number 6, December 2004

Fig. 5. Comparison between Figs. 1 and 4.

Level 1

Level 2

Level 3

③ ACC. adder→level 2 adder

Y

<<3

Critical path

X <<6 <<2 <<2

<<4

<<2

+ + -

+

+

z-1 + z-1 z-1+

Level 1

Level 2

X0

z-1

X-1

z-1 z-1 +

+

+ + - +

-

<<2

<<6 <<8 <<6 <<4

<<3

Y

Fanout=8
Fanout=5

Fanout=4

Critical path

Original filter Modified filter

② level 2 adder
→level 1 adder

① ACC. reg.→Input reg.

④ Max fanout : 8→5

Since the conventional TDF filter has a characteristic where

the current input multiplies with each fixed coefficient, the
multiplier block method [3], [4] can be used for adder sharing.
However such adder-sharing methods can not be applied to the
flattened coefficients method because the conventional filter
takes the same input for the multiplication with each coefficient
while the flattened coefficients method uses differently delayed
inputs. Therefore, a new adder sharing structure is necessary for
the flattened coefficients method.

For example, we assume that the coefficients are converted into
a canonical signed digit form by quantization, as in (9). Equation
(10) shows that every four NZTs of the coefficient are recombined
and rearranged in order that the deepest logic depth becomes two
adder levels. Equation (11) can be derived by factorization.

,22

,22

,22

,22

13
3

24
2

02
1

13
0

+−=

+−=

+−=

+−=

C

C

C

C

 (9)

.)2222(

)2222(

2222

2222

211130204

10120103

31332224

10120103

−−−

−−

−−−−

−−

+−+−+

+−++−=

+−+−

+−++−=

ZXXXX

XXXX

XXXX

XXXXY

 (10)

).21)(21)(22(

)21))(22()22(2(

)21)(2222(

)2222(

)2222(

2121001

21100110012

2110120103

211130204

10120103

−−

−−−

−−−

−−−

−−

+−+=

++++−=

++−+−=

+−+−+

+−+−=

ZXX

ZXXXX

ZXXXX

ZXXXX

XXXXY

(11)

C 0 : 01010
C 1 : 00101
C 2 : 10100
C 3 : 01010

Fig. 6. An example of an adder-shared structure.

+ + + +

- -

z-1 z-1 +

z-1

X-1

X0

Y

<<2

<<1

<<2

<<1 <<1 <<1 <<1

Same

Same

(a) Original filter

z-1

+ + + +

z-1 z-1 +

- -

Y

X-1

X0 <<1 <<1 <<1 <<1

<<2
<<2

<<1

(b) Filter implemented
 with proposed algorithm

(c) Coefficients

z-1 z-1 + z-1 +

-

Y

X0

<<2

<<1 <<2 <<1

(d) Filter implemented with RAGn algorithm

+

ETRI Journal, Volume 26, Number 6, December 2004 Sang-Hun Yoon et al. 549

Fig. 7. A second example of an adder-shared structure.

z-1

z-1

+ - - - +

+ + -

z-1 + + z-1 z-1 +

(a) Filter implemented with proposed algorithm

+ +

+ +

z-1 - +z-1 z-1 -

<<3

<<1

<<3 <<2

<<2

<<1 <<2

<<3

<<5

<<2
<<1

Y

X0

X-1

X-2

+ z-1 + Y

X0

-

-

<<2

<<1

<<2 <<2 <<4

<<3 <<5
<<10

<<2

<<5

(b) Filter implemented with RAGn algorithm

z-1

<<3

Figure 6(a) can be modified to Fig. 6(b) by (11). Figure 6(c)

shows the coefficients represented by CSD format. In Fig. 6(c),
the small circles ranging from C0 to C1 represent two NZT
pairs which can share one adder, as in Fig. 6(b), and the pattern
shapes of the two NZT pairs are the same. In the same manner,
two big circles on C0, C1, C2 and C3 show that the shared part
of the three adders and pattern shapes of the NZT in each circle
are the same. The searching for NZTs that can share adders can
be accomplished using the pattern searching of the same shape
in the coefficients matrix, as shown in Fig. 6(c) as well as in the
factorization of (11). If the RAGn algorithm [3] is used to
construct this example, the structure in Fig. 6(d) can be made.
In this case, because two accumulation adders are reduced, the
proposed adder sharing method can save one more adder than
a conventional one, although one more adder for the multiplier
block is needed. Adders can be shared in adder levels 1 and 2.
We define adder sharing types I, II, III as the cases when adders
can be shared in level 1 and level 2 at the same time, only in
level 2, and only in level 1, respectively.

For another example, let’s assume that the coefficients are
calculated as

)12(001000000010:

)58(010100000100:

)80(000000010100:
)26(010101000000:

)1117(011001010010:

)8(000000000010:

105

104

103

102

101

100

C

C

C
C

C

C

−
 (12)

The proposed architecture and the best structure in terms of
adder cost and logic depth among RAGn [3], BHM [4] ,
SLBHM [8], and C1 algorithm [9] for (12) are presented in
Figs. 7(a) and 7(b), respectively. This example shows that the
proposed algorithm can reduce the logic depth of the filter as

well as the number of maximum fanouts.

IV. Positioning of the Shared Adders

In the previous sections, we described a method to share
hardware resources. In this subsection, the methods for
positioning the multiplication results between the inputs and
coefficients are discussed. The positioning is defined as the
process of controlling n and k in Theorem 2. It is a matter of
course, but it can be overlooked. For example,

)15()(

)14()(

)13()(

18765

45432

54321

−−−−−

−−−−−

−−−−−

+++=

+++=

+++=

ZdXcXbXaX

ZdXcXbXaX

ZdXcXbXaXY

Here, (13) shows that the inputs delayed one, two, three, and
four times are summed up, and the result is then delayed five
times again. It provides an equal result with the summation of
six, seven, eight, and nine times the delayed values. Also, the
results of (14) and (15) are the same as the summation of six,
seven, eight, and nine times the delayed values. Figure 8 shows
the filter architecture implemented by (14) and (15).

One thing that has to be carefully controlled here is that the
distance among the shared adders must be maintained. Figure
9(a) shows the case where the distance among the shared adders
is 2. This distance has to be kept even if the accumulation
position on the filter is changed as in Fig. 9(b).

The shaded circle in Fig. 10 illustrates an overlapping of the
accumulation position as a result of positioning. In this case, the
adder with three operands should be used for the accumulation.
However, this causes an increase in the critical path delay.
Therefore, to solve this problem, one of the overlapped adders
can be moved to a collision free location, as shown in Fig. 11.
In summary, for implementation of the proposed filter, it is

550 Sang-Hun Yoon et al. ETRI Journal, Volume 26, Number 6, December 2004

Fig. 8. Filter with the same results.

+ +

z-1 + z-1 + … …

X

5

1

5 + 1 = 6
Delayed 6 times in total

= 2

X + +

+z-1… +z-1 +z-1 + z-1 +z-1 …
4

2 + 4 = 6

z-1

z-1
z-1

z-1

z-1
z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

+ +

Fig. 9. The number of accumulation registers between shared patterns.

z-1

<<2

X-1

X0 C 0 : 00010
C 1 : 10101
C 2 : 00010
C 3 : 10101

2

+ +

<<3

<<1

…
+

+ z-1 + z-1 + z-1 + Y

2

(a)

z-1

<<2

X-1

X0

C 0 : 00010
C 1 : 10101
C 2 : 00010
C 3 : 10101

2

+ +

<<3

<<1

…
+

+ z-1 + z-1 + z-1 + Y

2

z-1

X-2

(b)

- +

+

Fig. 10. Overlapped shared adders on accumulation position.

z-1

<<1

<<3 <<2

+ + z-1 + z-1 + z-1 + z-1

+

+ +
<<1

z-1

z-1 X0

X-1
X-2

Y

Accumulation
position

z-1

-+

+

+ + z-1 + z-1 + z-1 + z-1

+

+ +

z-1

z-1

Fig. 11. Repositioned pattern.

<<1

<<3

<<2

<< 1

X0

X-1

X-2

Y

ETRI Journal, Volume 26, Number 6, December 2004 Sang-Hun Yoon et al. 551

necessary to conduct a two-step process. The first step is the
pattern searching for adder sharing as described in section III,
and the second is the positioning process so as not to overlap
the position of the shared adder as illustrated in section IV.

V. Sharing-Pattern Searching Algorithm

Finding optimally shared patterns using the proposed method
is confronted by a non-polynomial (NP) problem. Therefore, we
have adopted a sub-optimal algorithm for the proposed method
which searches patterns using a sharing probability to resolve the
NP problem.

Step 1. Load coefficients to Coeff_Orig[][]
Step 2. Change coefficients from binary to canonical signed

digit
Step 3. Initialize temporal matrices Coeff_Remained[][] =

Coeff_Orig[][]
Step 4. Search all two_term patterns and count the appearance

in Coeff_Remained[][] for each patterns.
Step 5. Sort two_term patterns by the number of appearance.
Step 6. For I = 1 : number of different two_term patterns

Search four_term patterns with sorted two_ term
patterns and count the appearance in
Coeff_Remained[][] for each patterns :
UsedForTermNum

Step 7. Delete four_term patterns which have maximum
UsedFourTermNum from Coeff_Remained[][]

Step 8. If UsedFourTermNum > 1 goto Step 4 else goto Step 9
Step 9. Search two_term patterns and count the appearance

in Coeff_Remained[][] for each patterns :
UsedTwoTermNum.

Step 10. Delete two_term patterns which have maximum
UsedTwoTermNum from Coeff_Remained[][]

Step 11. If maximum UsedTwoTermNum > 1 goto Step 9
else goto Step 12

Step 12. Construct filter

VI. Experimental Results

1. Design Example

In order to verify the performance of the proposed filter, the
specifications in Table 1 are used and its coefficients are
generated using MATLAB™. Four methods are implemented
and compared; the multiplier block [3], [4], shared common
subexpression [5], [6], Step-Limiting RAGn [8], and the
proposed structure. Figure 12 and equation (16) show the
frequency response of the filter and the filter coefficients,
respectively.

Table 1. Specification of the designed filter.

No. of filter taps 48

Edge frequency 0.075, 0.125

Coefficient bits 10 bit

Stopband ripple -41.9 dB

Total no. of nonzero terms 94

No. of input bits 8 bit

No. of accumulation bits 19 bit

Fig. 12. Frequency response of the designed filter.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-50

-40

-30

-20

-10

0

10

Frequency

N
or

m
al

iz
ed

 fr
eq

ue
nc

y
re

sp
on

se
 (d

B
)

10742
23

106
11

10642
22

86
10

3
21

8
9

1074
20

108
8

1086
19

107
7

106
18

7
6

85
17

108
5

975
16

9
4

975
15

9
3

7
14

9
2

107
13

108
1

6
12

9
0

222222

222222

22

22222

22222

222

2222

2222

2222

22

2222

22

−−−−−−

−−−−−−

−−

−−−−−

−−−−−

−−−

−−−−

−−−−

−−−−

−−

−−−−

−−

++−=+=

−−−=−=

==

++=+−=

++=+−=

−−=−=

−−=−−=

+−−=−=

−+−==

−==

−=+=

==

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

(16)

Since searching optimum patterns for adder sharing is a
combinatorial NP hard problem, the process of searching for
optimum patterns consumes too much computing time. In this
paper, we used the heuristic method to get an optimal filter.

2. Design Results

Figure 13 shows the block diagram of the proposed filter

552 Sang-Hun Yoon et al. ETRI Journal, Volume 26, Number 6, December 2004

Fig. 13. Block diagram of the designed filter.

+

z-1
X0

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

X0 X-1 X-2 X-3 X-4 X-23 X-24 X-25 X-26 X-27

…

<<2

+

<<2

+

<<1

-

<<1

+ +

X0 X-10 X-5 X-15 X-3 X-5 X-14 X-16 X0 X-10 X-8 X-22

…
Make_pattern_2 block

Make_pattern_4 block

+ +

+ z-1 + z-1 + … z-1 + z-1 +

Accumulation block

Input delay block

which consists of an input delay, make_pattern_2,
make_pattern_4, and accumulation block. The input delay and
accumulation block are the parts used to delay input X and the
accumulation value through the registers, respectively. The
make_pattern_2 block adds/subtracts two delayed inputs. The
make_pattern_4 block adds/subtracts two outputs from the
make_pattern_2 block.

Since we assumed that the number of input bits of the filter
designed in this section is 8, a 9-bit adder, illustrated in Figs.
14(a) and 14(b), is necessary to add the two delayed and/or
shifted inputs. This results in 9- to 16-bit data. To calculate the
level 2 additions in Fig. 14(a), 10- to 17-bit adders are necessary,
as shown in Fig. 14(c), which is proved by the simulation of 19-bit

Fig. 14. Adder bits in each level.

Level 1

X-1

X0

+ +

+

+

Level 2

ACC.

(a) Adder level

(b) Adder bit needed in level 1

Level 1 input 1

Level 1 input 2 +

S

S

Level 1 output

9 bit

8 bit

8 bit

9 bit

9 bit

S 8 bit

S +
…

16 bit

S

9 bit

10 bit

+ S

9 bit

S 9 bit

x bit

S

x bit 16 bit x bit

16 bit

16 bit

17 bit x bit

+

Level 2 input 1

Level 2 input 2

Level 2 output

(c) Adders in level 2

8 bit

…

operations that are needed in the accumulation of intermediate
data. As described above, the adders in each level have a
different number of bits. Also, the IR and RA have a different
number of flip-flops. Therefore, if the algorithm is compared by
only the number of adders or registers, the correct outcome
cannot be derived. As a result, this paper compares not only the
number of adders and registers but also the total number of bits
for the adder and register.

Table 2 shows the results of the filters structured by the

Table 2. Comparison of filter resources.

RAGn BHM SLRAGn Proposed

No. Total bits No. Total bits No. Total bits No. Total bits

level 1 5 45 5 45 5 45 21 189

level 2 6 84 4 56 6 56 12 168

level 3 0 0 2 28 0 0 0 0

accumulator 47 893 47 893 47 893 23 437

Adder

total 58 1022 58 1022 58 1022 56 794

input 0 0 0 0 0 0 27 216

accumulator 48 912 48 912 48 912 24 456 Register

total 48 912 48 912 48 912 51 672

ETRI Journal, Volume 26, Number 6, December 2004 Sang-Hun Yoon et al. 553

multiplier block (RAGn) [3], BHM [4], Step-Limiting RAGn
(SLRAGn) [8], and the proposed structure. ‘No.’ and ‘total bits’
represent the number of adders or registers and the total number
of bits in each design, respectively. In level 2 from Table 2, the
number of total bits, 84, can be calculated by 14 × 6, since the
average number of adder bits in level 2 is 14; 10- to 17-bit adders
are used, as shown in Fig. 14(c). By the proposed structure, some
adders in an accumulation block are transformed to either level 1
or level 2, and from the RA to the IR. In conclusion, our method
can accomplish more than a 26% and 22% reduction in the
number of flip-flops and full-adders, respectively, compared to
conventional methods.

Table 3 shows the synthesis results to prove Table 2 using
the LSI10k library with Synopsys™ DesignAnalyzer. It
demonstrates the benefits of the proposed structure including
large reductions in the critical path delay.

Table 3. Synthesized results of the filter in Table 1.

 RAGn SCSE SLRAGn Proposed

Combinational logic 7,528 7,868 7,530 6,268

Sequential logic 8,208 8,208 8,208 6,291

Total area 15,736 16,076 15,738 12,559

Critical path delay 50.29 29.59 49.28 29.15

Table 4 shows the design results of another two examples,
from which our method turns out to be excellent in both
hardware areas and in the critical path delay.

Table 4. Other design examples.

Filter spec. Algorithm Tot. adder bits Tot. reg. bits Logic depth
RAGn 490 450 2

SCSE 502 450 2

SLRAGn 490 450 2

T=25
N=9

NZT= 45
Proposed 397 318 2

RAGn 1,736 1,416 3

SCSE 1,760 1,416 2

SLRAGn 1,788 1,416 2

T=59
N=14

NZT = 170
proposed 1,644 1,360 2

VII. Conclusion

In this paper, we proposed a new method to reduce both the
number of registers and adders which occupy most of the area in

a digital filter. The proposed method made it possible to predict
the critical path delay and transform a TDF partially into a DF
filter. A new adder sharing method has been introduced. As a
result, the number of flip-flops and full-adders were decreased.
In this paper, the algorithm to obtain the optimal result is not used.
Therefore, we cannot assert that the results obtained by the
proposed method are always the most suitable ones. If the
searching and positioning algorithm that is able to find the
optimal result is used, the performance will improve. Researches
to find the algorithms for the optimal solution are being
conducted.

References

[1] R. Hartley, “Optimization of Canonical Signed Digit Multipliers
for Filter Design,” Proc. IEEE Int’l. Symp. Circuits Systems,
Singapore, June 1991, pp. 1992-1995.

[2] M. Potkonjak et al., “Multiple Constant Multiplication: Efficient
and Versatile Framework and Algorithms for Exploring Common
Subexpression Elimination,” IEEE Trans. Computer-Aided
Design, vol. 15, no. 2, Feb. 1996, pp. 151-165.

[3] A. Dempster and M.D. Macleod, “Use of Minimum-Adder
Multiplier Blocks in FIR Digital Filters,” IEEE Trans. Circuits
Syst. II, vol. 42, Sept. 1995, pp. 569-577.

[4] D.R. Bull and D.H. Horrocks, “Primitive Operator Digital Filter,”
Proc. Inst. Ele. Eng. Circuits, Devices and Systems, vol. 138, pt. G,
June 1991, pp. 401-412.

[5] R. Hartley, “Subexpression Sharing in Filters Using Canonical
Signed Digit Multipliers,” IEEE Trans. Circuits Syst. II, vol. 43,
Oct. 1996, pp. 677-688.

[6] M. Martinez-Peiro, E.I. Boemo, and L. Wanhammar, “Design of
High-Speed Multiplierless Filters Using a Nonrecursive Signed
Common Subexpression Algorithm,” IEEE Trans. Circuits Syst. II,
vol. 49, no. 3, Mar. 2002, pp. 196-203.

[7] S.H. Yoon and J.W. Chong, “FIR Digital Filter Implementation
Using Flattened Coefficient,” Proc. IEEE Int’l Symp. Circuits and
Systems, Geneva, May 2000, pp. III-363-366.

[8] H.J. Kang and I.C. Park, “FIR Filter Synthesis Algorithms for
Minimizing the Delay and the Number of Adders,” IEEE Trans.
Circuits Syst. II, vol. 48, no. 8, Aug. 2001, pp. 770-777.

[9] A. Dempster, S. Demirsoy, and I. Kale, “Designing Multiplier
Blocks with Low Logic Depth,” Proc. IEEE Int’l Symp. Circuits
and Systems, Mar. 2002, pp. V-773-776.

554 Sang-Hun Yoon et al. ETRI Journal, Volume 26, Number 6, December 2004

Sang-Hun Yoon was born in Seoul, Korea, in
1973. He received the BS and MS degrees in
electronic engineering from Hanyang
University, Seoul, Korea, in 1996 and 1998.
Since 2000, he has been a Lecturer in the
Department of Computer Science, Hanyang
Woman’s College, Seoul, Korea. His current

research interests include VLSI circuit design, especially wireless
modem design.

Jong-Wha Chong received the BS and MS
degrees in electronic engineering from Hanyang
University in Seoul, Korea, in 1975 and 1977
and the PhD degree from Waseda University,
Japan in 1981 in electronic communication
engineering. From 1979 to 1980, he was with
NEC Central laboratory. Since 1981, he has

been a Professor at Hanyang University. His current research interests
are in VLSI design for digital signal and image processing, video
compression, high-speed wireless LAN, and digital communication
systems.

Chi-Ho Lin received the BS, MS, and PhD
degrees in electronics engineering from
Hanyang University, Seoul, Korea, in 1985,
1987, and 1996, respectively. Since 1992, he has
been with the Department of Computer Science
at Semyung University where he is currently an
Associate Professor. His research interests are

VLSI CAD algorithms, SOC design methodology, VLSI & ASIC
designs, and lower power designs. He is currently involved in the
administering affairs of IEEK.

