• Title/Summary/Keyword: clustered binomial data

Search Result 7, Processing Time 0.021 seconds

Tests for homogeneity of proportions in clustered binomial data

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.433-444
    • /
    • 2016
  • When we observe binary responses in a cluster (such as rat lab-subjects), they are usually correlated to each other. In clustered binomial counts, the independence assumption is violated and we encounter an extra-variation. In the presence of extra-variation, the ordinary statistical analyses of binomial data are inappropriate to apply. In testing the homogeneity of proportions between several treatment groups, the classical Pearson chi-squared test has a severe flaw in the control of Type I error rates. We focus on modifying the chi-squared statistic by incorporating variance inflation factors. We suggest a method to adjust data in terms of dispersion estimate based on a quasi-likelihood model. We explain the testing procedure via an illustrative example as well as compare the performance of a modified chi-squared test with competitive statistics through a Monte Carlo study.

Modeling clustered count data with discrete weibull regression model

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.413-420
    • /
    • 2022
  • In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell Poisson regression models, which are widely used in count data analyses. The results show that the clustered discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can flexibly model count data with various dispersion without the risk of making wrong assumptions about the data dispersion.

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.

Sample size calculations for clustered count data based on zero-inflated discrete Weibull regression models

  • Hanna Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • In this study, we consider the sample size determination problem for clustered count data with many zeros. In general, zero-inflated Poisson and binomial models are commonly used for zero-inflated data; however, in real data the assumptions that should be satisfied when using each model might be violated. We calculate the required sample size based on a discrete Weibull regression model that can handle both underdispersed and overdispersed data types. We use the Monte Carlo simulation to compute the required sample size. With our proposed method, a unified model with a low failure risk can be used to cope with the dispersed data type and handle data with many zeros, which appear in groups or clusters sharing a common variation source. A simulation study shows that our proposed method provides accurate results, revealing that the sample size is affected by the distribution skewness, covariance structure of covariates, and amount of zeros. We apply our method to the pancreas disorder length of the stay data collected from Western Australia.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

Weighted zero-inflated Poisson mixed model with an application to Medicaid utilization data

  • Lee, Sang Mee;Karrison, Theodore;Nocon, Robert S.;Huang, Elbert
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.173-184
    • /
    • 2018
  • In medical or public health research, it is common to encounter clustered or longitudinal count data that exhibit excess zeros. For example, health care utilization data often have a multi-modal distribution with excess zeroes as well as a multilevel structure where patients are nested within physicians and hospitals. To analyze this type of data, zero-inflated count models with mixed effects have been developed where a count response variable is assumed to be distributed as a mixture of a Poisson or negative binomial and a distribution with a point mass of zeros that include random effects. However, no study has considered a situation where data are also censored due to the finite nature of the observation period or follow-up. In this paper, we present a weighted version of zero-inflated Poisson model with random effects accounting for variable individual follow-up times. We suggested two different types of weight function. The performance of the proposed model is evaluated and compared to a standard zero-inflated mixed model through simulation studies. This approach is then applied to Medicaid data analysis.

Generalized Linear Mixed Model for Multivariate Multilevel Binomial Data (다변량 다수준 이항자료에 대한 일반화선형혼합모형)

  • Lim, Hwa-Kyung;Song, Seuck-Heun;Song, Ju-Won;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.923-932
    • /
    • 2008
  • We are likely to face complex multivariate data which can be characterized by having a non-trivial correlation structure. For instance, omitted covariates may simultaneously affect more than one count in clustered data; hence, the modeling of the correlation structure is important for the efficiency of the estimator and the computation of correct standard errors, i.e., valid inference. A standard way to insert dependence among counts is to assume that they share some common unobservable variables. For this assumption, we fitted correlated random effect models considering multilevel model. Estimation was carried out by adopting the semiparametric approach through a finite mixture EM algorithm without parametric assumptions upon the random coefficients distribution.