• Title/Summary/Keyword: climate model

Search Result 2,517, Processing Time 0.024 seconds

Application of the WRF Model for Dynamical Downscaling of Climate Projections from the Community Earth System Model (CESM) (WRF V3.3 모형을 활용한 CESM 기후 모형의 역학적 상세화)

  • Seo, Jihyun;Shim, Changsub;Hong, Jiyoun;Kang, Sungdae;Moon, Nankyoung;Hwang, Yun Seop
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.347-356
    • /
    • 2013
  • The climate projection with a high spatial resolution is required for the studies on regional climate changes. The Korea Meteorological Administration (KMA) has provided downscaled RCP (Representative Concentration Pathway) scenarios over Korea with 1 km spatial resolution. If there are additional climate projections produced by dynamically downscale, the quality of impacts and vulnerability assessments of Korea would be improved with uncertainty information. This technical note intends to instruct the methods to downscale the climate projections dynamically from the Community Earth System Model (CESM) to the Weather Research and Forecast (WRF) model. In particular, here we focus on the instruction to utilize CAM2WRF, a sub-program to link output of CESM to initial and boundary condition of WRF at Linux platform. We also provide the example of the dynamically downscaled results over Korean Peninsula with 50 km spatial resolution for August, 2020. This instruction can be helpful to utilize global scale climate scenarios for studying regional climate change over Korean peninsula with further validation and uncertainty/bias analysis.

A Simulation Study on Future Climate Change Considering Potential Forest Distribution Change in Landcover (잠재 산림분포 변화를 고려한 토지이용도가 장래 기후변화에 미치는 영향 모사)

  • Kim, Jea-Chul;Lee, Chong Bum;Choi, Sungho
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2012
  • Future climate according to land-use change was simulated by regional climate model. The goal of study was to predict the distribution of meteorological elements using the Weather Research & Forecasting Model (WRF). The KME (Korea Ministry of Environment) medium-category land-use classification was used as dominant vegetation types. Meteorological modeling requires higher and more sophisticated land-use and initialization data. The WRF model simulations with HyTAG land-use indicated certain change in potential vegetation distribution in the future (2086-2088). Compared to the past (1986-1988) distribution, coniferous forest area was decreased in metropolitan and areas with complex terrain. The research shows a possibility to simulate regional climate with high resolution. As a result, the future climate was predicted to $4.5^{\circ}$ which was $0.5^{\circ}$ higher than prediction by Meteorological Administration. To improve future prediction of regional area, regional climate model with HyTAG as well as high resolution initial values such as urban growth and CO2 flux simulation would be desirable.

Dynamic Downscaling for Regional Ocean Climate Modeling Around the Korean Peninsula and Its Application in Fisheries (한반도 주변 해역 해양기후모델 구축 및 수산분야 적용)

  • Changsin Kim;Joon-Soo Lee;Joon-Yong Yang;In-Seong Han
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • We developed a regional ocean climate model using dynamic downscaling in the Northwest Pacific Ocean to build a climate model for the Korean Peninsula. The past marine environment was reproduced through historical simulations, and the future marine environment in 2100 was predicted according to the shared socioeconomic pathways (SSP) climate change scenario. The future sea surface temperature of the Korean seas is predicted to rise about 1-4℃, and the increase in water temperature in the East Sea is expected to be the largest. The National Institute of Fisheries Science has monitored abnormal seawater temperatures such as high and low seawater temperatures in coastal and inland waters, and predicted that the number of high seawater temperature days in the East, West, South Sea, and the coast of Jeju Island will increase in the future. In addition, the occurrence of Ciguatera fish poison plankton around Jeju Island was projected to increase. This study is expected to provide accurate forecasting information for fishery issues. The aim of this study was to analyze future ocean environment changes around the Korean Peninsula using climate change SSP scenarios and predict fisheries issues through future projections of the regional ocean climate model.

Characteristics of Signal-to-Noise Paradox and Limits of Potential Predictive Skill in the KMA's Climate Prediction System (GloSea) through Ensemble Expansion (기상청 기후예측시스템(GloSea)의 앙상블 확대를 통해 살펴본 신호대잡음의 역설적 특징(Signal-to-Noise Paradox)과 예측 스킬의 한계)

  • Yu-Kyung Hyun;Yeon-Hee Park;Johan Lee;Hee-Sook Ji;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.55-67
    • /
    • 2024
  • This paper aims to provide a detailed introduction to the concept of the Ratio of Predictable Component (RPC) and the Signal-to-Noise Paradox. Then, we derive insights from them by exploring the paradoxical features by conducting a seasonal and regional analysis through ensemble expansion in KMA's climate prediction system (GloSea). We also provide an explanation of the ensemble generation method, with a specific focus on stochastic physics. Through this study, we can provide the predictability limits of our forecasting system, and find way to enhance it. On a global scale, RPC reaches a value of 1 when the ensemble is expanded to a maximum of 56 members, underlining the significance of ensemble expansion in the climate prediction system. The feature indicating RPC paradoxically exceeding 1 becomes particularly evident in the winter North Atlantic and the summer North Pacific. In the Siberian Continent, predictability is notably low, persisting even as the ensemble size increases. This region, characterized by a low RPC, is considered challenging for making reliable predictions, highlighting the need for further improvement in the model and initialization processes related to land processes. In contrast, the tropical ocean demonstrates robust predictability while maintaining an RPC of 1. Through this study, we have brought to attention the limitations of potential predictability within the climate prediction system, emphasizing the necessity of leveraging predictable signals with high RPC values. We also underscore the importance of continuous efforts aimed at improving models and initializations to overcome these limitations.

Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios (RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측)

  • Koo, Kyung Ah;Kim, Jaeuk;Kong, Woo-seok;Jung, Huicheul;Kim, Geunhan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.

An Effect of Organizational Security Climate on Individual's Opportunistic Security Behavior: An Empirical Study (조직의 보안 분위기가 개인의 기회주의 행동에 미치는 영향에 관한 실증 연구)

  • Yim, Myung-Seong
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.31-46
    • /
    • 2012
  • Drawing upon Griffin and Neal's safety climate and performance model, this study developed an information security climate model. Research model is composed of three research variables that include information security climate, information security compliance attitude, and opportunistic security behavior. Results of the study strongly support the fundamental proposition that the organizational security climate has significant positive influence on the individual's opportunistic security behavior. However, the study also reveals that the organizational climate may not directly associate with the reduction of opportunistic security behavior. Rather the organizational security climate nurtures the favorable attitude of the employee towards the compliance of information security, which in turn discourages opportunistic security behavior.

The Impact of Organizational Information Security Climate on Employees' Information Security Participation Behavior (조직의 정보보안 분위기가 조직 구성원의 정보보안 참여 행동에 미치는 영향)

  • Park, Jaeyoung;Kim, Beomsoo
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.57-76
    • /
    • 2020
  • Purpose Although examining the antecedents of employees' extra-role behavior (i.e. information security participation behavior) in the information security context is significant for researchers and practitioners, most behavioral security studies have focused on employees' in-role behavior (i.e. information security policy compliance). Thus, this research addresses this gap by investigating how organizational information security climate influences information security participation behavior based on social information processing theory and Griffin and Neal's safety model. Design/methodology/approach We developed a research model by applying Griffin and Neal's safety model to the information security context and then tested our research model by conducting an online survey for employees of organizations with information security policies. Structural equation modeling (SEM) with SmartPLS 3.3.2 is used to test the corresponding hypothesis. Findings Our results show that organizational information security climate, information security knowledge, information security motivation are effective in motivating information security participation behavior. Also, we find that organizational information security climate positively influences both information security knowledge and information security motivation. Our findings emphasize the importance of organizational information security climate because it is capable of affecting employees on information security participation behavior. Our study contributes to the literature on information security by exploring the role of organizational information security climate in enhancing employees' information security participation behavior.

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

Assessing the Climate Change Impacts on Agricultural Reservoirs using the SWAT model and CMIP5 GCMs (SWAT모형과 CMIP5 자료를 이용한 기후변화에 따른 농업용 저수지 기후변화 영향 평가)

  • Cho, Jaepil;Hwang, Syewoon;Go, Gwangdon;Kim, Kwang-Young;Kim, Jeongdae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.1-12
    • /
    • 2015
  • The study aimed to project inflows and demmands for the agricultural reservoir watersheds in South Korea considering a variety of regional characteristics and the uncertainty of future climate information. The study bias-corrected and spatially downscaled retrospective daily Global Climate Model (GCM) outputs under Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios using non-parametric quantile mapping method to force Soil and Water Assessment Tool (SWAT) model. Using the historical simulation, the skills of un-calibrated SWAT model (without calibration process) was evaluated for 5 reservoir watersheds (selected as well-monitored representatives). The study then, evaluated the performance of 9 GCMs in reproducing historical upstream inflow and irrigation demand at the five representative reservoirs. Finally future inflows and demands for 58 watersheds were projected using 9 GCMs projections under the two RCP scenarios. We demonstrated that (1) un-calibrated SWAT model is likely applicable to agricultural watershed, (2) the uncertainty of future climate information from different GCMs is significant, (3) multi-model ensemble (MME) shows comparatively resonable skills in reproducing water balances over the study area. The results of projection under the RCP 4.5 and RCP 8.5 scenario generally showed the increase of inflow by 9.4% and 10.8% and demand by 1.4% and 1.7%, respectively. More importantly, the results for different seasons and reservoirs varied considerably in the impacts of climate change.

Flood Risk for Power Plant using the Hydraulic Model and Adaptation Strategy

  • Nguyen, Thanh Tuu;Kim, Seungdo;Van, Pham Dang Tri;Lim, Jeejae;Yoo, Beomsik;Kim, Hyeonkyeong
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 2017
  • This paper provides a mathematical approach for estimating flood risks due to the effects of climate change by developing a one dimensional (1D) hydraulic model for the mountainous river reaches located close to the Yeongwol thermal power plant. Input data for the model, including topographical data and river discharges measured every 10 minutes from July $1^{st}$ to September $30^{th}$, 2013, were imported to a 1D hydraulic model. Climate change scenarios were estimated by referencing the climate change adaptation strategies of the government and historical information about the extreme flood event in 2006. The down stream boundary was determined as the friction slope, which is 0.001. The roughness coefficient of the main channels was determined to be 0.036. The results show the effectiveness of the riverbed widening strategy through the six flooding scenarios to reduce flood depth and flow velocity that impact on the power plant. In addition, the impact of upper Namhan River flow is more significant than Dong River.