• Title/Summary/Keyword: clean시스템

Search Result 611, Processing Time 0.023 seconds

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines (대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구)

  • Nguyen, Van Duc;Lee, Chang Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.480-507
    • /
    • 2019
  • This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.

Development of System on the Sustained Production of Chlorine Dioxide Using Polymer Hydrogels (고분자 수화젤을 이용한 이산화염소의 지속적 생성 시스템의 개발)

  • Jeon, Younghyun;Kim, Bumsang
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.173-176
    • /
    • 2012
  • Chlorine dioxide has an excellent ability to sterilize and deodorize and is harmless to humans. However, it is very unstable and explosive as it is highly concentrated, thus its use in the air clean filed has been limited. Therefore, there is a demand to develop the system to produce a low concentration of chlorine dioxide sustainedly. Here, for a first step in the development of the system on the sustained production of chlorine dioxide, the use of polymer hydrogels was investigated. P(MMA-co-HEMA) hydrogel particles were prepared via dispersion photopolymerization and sodium chlorite and citric acid were loaded respectively in the hydrogel particles. When sodium chlorite and citric acid were reacted with not loaded in the hydrogels, rapid production of chlorine dioxide occurred and the concentration of chlorine dioxide decreased over time. However, when sodium chlorite and citric acid were loaded respectively in the hydrogel particles and reacted, chlorine dioxide was produced slowly and sustainedly because the release of sodium chlorite and citric acid from the hydrogels delayed the reaction between them. The result shows that the use of P(MMA-co HEMA) hydrogels has the potential to develop the system on the sustained production of chlorine dioxide.

I-vector similarity based speech segmentation for interested speaker to speaker diarization system (화자 구분 시스템의 관심 화자 추출을 위한 i-vector 유사도 기반의 음성 분할 기법)

  • Bae, Ara;Yoon, Ki-mu;Jung, Jaehee;Chung, Bokyung;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.461-467
    • /
    • 2020
  • In noisy and multi-speaker environments, the performance of speech recognition is unavoidably lower than in a clean environment. To improve speech recognition, in this paper, the signal of the speaker of interest is extracted from the mixed speech signals with multiple speakers. The VoiceFilter model is used to effectively separate overlapped speech signals. In this work, clustering by Probabilistic Linear Discriminant Analysis (PLDA) similarity score was employed to detect the speech signal of the interested speaker, which is used as the reference speaker to VoiceFilter-based separation. Therefore, by utilizing the speaker feature extracted from the detected speech by the proposed clustering method, this paper propose a speaker diarization system using only the mixed speech without an explicit reference speaker signal. We use phone-dataset consisting of two speakers to evaluate the performance of the speaker diarization system. Source to Distortion Ratio (SDR) of the operator (Rx) speech and customer speech (Tx) are 5.22 dB and -5.22 dB respectively before separation, and the results of the proposed separation system show 11.26 dB and 8.53 dB respectively.

Remote Monitoring Panel and Control System for Chemical, Biological and Radiological Facilities (화생방 방호시설을 위한 원격감시 패널 및 제어시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.464-469
    • /
    • 2019
  • A remote monitoring panel and control system was developed to control various valves and access control chambers, including gas shutoff valves used in CBR(Chemical, Biological and Radiological) facilities. The remote monitoring panel consisted of a main panel installed in the NBC (Nuclear, Biological and Chemical) control room and auxiliary panel installed in the clean room, and the size was divided into pure control and control including CCTV. This system can be monitored and controlled remotely according to the situation where an explosion door and gas barrier door can occur during war and during normal times. This system is divided into normal mode and war mode. In particular, it periodically senses the operation status of various valves, sensors, and filters in the CBR facilities to determine if each apparatus and equipment is in normal operation, and remotely alerts situation workers when repair or replacement is necessary. Damage due to the abnormal operation of each device in the situation can be prevented. This enables control of the blower, supply and exhaust damper, emergency generator, and coolant pump according to the state of shutoff valve and positive pressure valve in the occurrence of NBC, and prevents damage caused by abrupt inflow of conventional weapons and nuclear explosions.

Permanent Formwork of PLA Filament utilizing 3D Printing Technology (3D 프린팅 기술을 활용한 PLA 필라멘트 비탈형 거푸집 연구)

  • Jeong, Junhyeong;Hyun, Jihun;Jeong, Heesang;Go, Huijae;Lee, Juhee;Ahn, Joseph
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2021
  • In recent years, the design of buildings is changing from formal to creative and freeform. Accordingly, the scale of construction technology is changing to architectural design and construction of irregular buildings. Using the FDM method, which is one of the 3D printing technologies, it is possible to manufacture various forms of irregular formwork inexpensively and quickly coMPared to the existing formwork, and it seems to be able to solve the manpower problem. Using a 3D printer, the PLA filament formwork is produced in the form of a cylinder and a rectangular cuboid, and the usability of the PLA filament formwork is confirmed by examining the compression strength test and the degree of deformation and reusability over 28 days of age. Different sizes of additional specimens are also conducted according to the size. As a result of the experiment, it was confirmed that the filament formwork itself has about 3~4MPa strength. As a result of reviewing data through existing linear studies and experiments, it is appropriate to use more than 60% infill, and it is advantageous in terms of strength. As a result of cutting and dismantling the filament formwork, the surface is very clean and there is no damage, so it can be reused.

Water Purification and Ecological Restoration Effects of the Keumeo Stream Sustainable Structured wetland Biotop (SSB) System Established on the Floodplain of Kyungan Stream (경안천 고수부지에 조성한 금어천 생태적수질정화비오톱 시스템의 수질정화 및 생태복원 효과)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.23-35
    • /
    • 2010
  • A Sustainable Structured wetland Biotop (SSB) system was constructed on the floodplain of Kyungan stream in December, 2006. It purifies polluted water of Keumeo stream which flows into the stream. Water were sampled once a month at inlet and outlet from December, 2007 to December, 2008. $BOD_5$, SS, T-N and T-P were analyzed. Plant and fish species of the system were monitored twice during the period. Average influent and effluent BOD5 concentration was 6.2 and 2.2 mg/L, respectively and BOD5 removal was 50.8%. SS concentration of influent and effluent was averaged 10.1mg/L and 1.5mg/L, respectively and SS abatement amounted to 77.0%. Average influent and effluent T-N concentration was 4.9mg/L and 2.9 mg/L, respectively and T-N retention was 50.8%. T-P concentration of influent and effluent was averaged 0.386mg/L and 0.107mg/L, respectively and T-P removal amounted to 77.0%. Twenty two plant species were naturally introduced into the system, however, they didn't make up a significant portion of the plant populations compared with the planted species. Dominant plant species were in the following order; Phragmites communis > Typha latifolia > Iris pseudoacorus > Persicaria thunbergii. Five families and 15 species of fish were observed in the system including Chinese minnow (Moroco oxycephalus) which inhabits in clean water. Six more fish species were monitored in the system compared with ones living in Kyungan stream. Amphibia and reptiles accounted for 11 species of 4 orders and 7 families including Korean Salamander (Hynobius leechi) which also lives in cleanwater.

Speaker Independent Recognition Algorithm based on Parameter Extraction by MFCC applied Wiener Filter Method (위너필터법이 적용된 MFCC의 파라미터 추출에 기초한 화자독립 인식알고리즘)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1149-1154
    • /
    • 2017
  • To obtain good recognition performance of speech recognition system under background noise, it is very important to select appropriate feature parameters of speech. The feature parameter used in this paper is Mel frequency cepstral coefficient (MFCC) with the human auditory characteristics applied to Wiener filter method. That is, the feature parameter proposed in this paper is a new method to extract the parameter of clean speech signal after removing background noise. The proposed method implements the speaker recognition by inputting the proposed modified MFCC feature parameter into a multi-layer perceptron network. In this experiments, the speaker independent recognition experiments were performed using the MFCC feature parameter of the 14th order. The average recognition rates of the speaker independent in the case of the noisy speech added white noise are 94.48%, which is an effective result. Comparing the proposed method with the existing methods, the performance of the proposed speaker recognition is improved by using the modified MFCC feature parameter.

Water Demand and Supply Stability Analysis Using Shared Vision Model (Shared Vision 모형을 이용한 용수수급의 안정성 분석)

  • Jeong, Sang-Man;Lee, Joo-Heon;Ahn, Joong-Kun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.569-579
    • /
    • 2004
  • Recently, the extreme drought is often occurred due to the global warming and the serious weather changes. Also, the problems of the water pollution In the developed areas, the oppositions from people in the upper stream area and water concession from the local governments affect the national request to get more clean water resources in upper stream of the undeveloped areas. It also brings on the necessity of recognition for water supply managements. Therefore, as the water demand is rapidly changes in the metropolitan areas, the capability of water supply from the north Han river basin dams should be appropriately investigated. In this study, we developed a simulation system using STELLA (equation omitted) software environment, a shared vision model, to analyze the possibility of the stable water supply from north Han river basin dams. Also, three different rules are applied on this model by dividing the water level to minimum(Rule 1), medium(Rule 2) and maximum(Rule 3). Using the rules, the safety yield changes are analyzed for dam rule curve of the reservoir and hydropower release.

A Prediction on Indoor Contaminant Diffusion Characteristics of a Training Ship by Mechanical Ventilation System (기계식 환기시스템에 의한 선내 오염물질 확산 특성 예측)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1124-1131
    • /
    • 2011
  • This study performed the prediction about the indoor contaminant's diffusion characteristics which can be affected by the mechanical ventilation system on a training ship. The results are as followings. It is clear that the contaminants are spread to most of the indoors, regardless of the contamination beginning zone. About 65~100 minutes later, the contaminant densities of whole indoor zones are evaluated as clean. Comparing the contamination beginning zone being located at higher deck(scenario A) to the contamination beginning zone being located at lower deck(scenario B), although the contaminant density by scenario A is 10 times higher than that by scenario B, the number of contaminated zones are 50% less. The contaminant densities are evaluated as to be rapidly decreased when the outside air induction ratio against design volume is over 75%.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.