DOI QR코드

DOI QR Code

고분자 수화젤을 이용한 이산화염소의 지속적 생성 시스템의 개발

Development of System on the Sustained Production of Chlorine Dioxide Using Polymer Hydrogels

  • Jeon, Younghyun (Department of Chemical Engineering, Hongik University) ;
  • Kim, Bumsang (Department of Chemical Engineering, Hongik University)
  • 투고 : 2011.06.02
  • 심사 : 2011.06.25
  • 발행 : 2012.02.01

초록

이산화염소는 우수한 살균력과 탈취력, 그리고 인체에 무해한 장점을 가지고 있으나, 과량 존재 시 불안정하고 폭발위험성이 존재하여 공기청정분야에서의 사용이 제한적이다. 따라서 본 연구에서는 고분자 수화젤 입자 내부에 아염소산나트륨과 시트르산을 각각 탑재시킨 후, 수화젤 입자로부터 방출된 두 물질이 반응하여 저농도의 이산화염소를 장시간 지속적으로 발생시킬 수 있는 시스템을 개발하고자 하였다. 분산광중합을 이용하여 P(MMA-co-HEMA) 수화젤 입자를 합성하였고, 수화젤 입자로부터 방출된 아염소산나트륨과 시트르산이 반응하여 생성된 이산화염소의 양과 수화젤에 탑재하지 않은 아염소산나트륨과 시트르산이 직접 반응하여 생성된 이산화염소의 양을 시간의 경과에 따라서 비교한 결과, 아염소산나트륨과 시트르산이 직접 반응하는 경우, 생성된 이산화염소가 시간이 경과함에 따라서 분해되어 그 양이 점차 감소하였으나 수화젤을 사용한 경우는, 아염소산나트륨과 시트르산이 수화젤로부터 방출된 후 반응을 하기 때문에 반응시간이 지연되어서 저농도의 이산화염소가 지속적으로 생성되는 것을 관찰할 수 있었다. 이러한 결과는 본 연구에서 목적으로 하는 저농도의 이산화염소를 장시간에 걸쳐서 지속적으로 생성할 수 있는 시스템을 고분자 수화젤을 이용하여 구현할 수 있음을 보여준다.

Chlorine dioxide has an excellent ability to sterilize and deodorize and is harmless to humans. However, it is very unstable and explosive as it is highly concentrated, thus its use in the air clean filed has been limited. Therefore, there is a demand to develop the system to produce a low concentration of chlorine dioxide sustainedly. Here, for a first step in the development of the system on the sustained production of chlorine dioxide, the use of polymer hydrogels was investigated. P(MMA-co-HEMA) hydrogel particles were prepared via dispersion photopolymerization and sodium chlorite and citric acid were loaded respectively in the hydrogel particles. When sodium chlorite and citric acid were reacted with not loaded in the hydrogels, rapid production of chlorine dioxide occurred and the concentration of chlorine dioxide decreased over time. However, when sodium chlorite and citric acid were loaded respectively in the hydrogel particles and reacted, chlorine dioxide was produced slowly and sustainedly because the release of sodium chlorite and citric acid from the hydrogels delayed the reaction between them. The result shows that the use of P(MMA-co HEMA) hydrogels has the potential to develop the system on the sustained production of chlorine dioxide.

키워드

과제정보

연구 과제 주관 기관 : 중소기업청

참고문헌

  1. Qui, Y. and Park, K. N., "Environment-sensitive Hydrogels for Drug Delivery," Adv. Drug Deliv. Rev., 53, 321-339(2001). https://doi.org/10.1016/S0169-409X(01)00203-4
  2. Lu, S., Luo, Y., Turner, Feng, E. H., "Efficacy of Sodium Chlorite as an Inhibitor of Enzymatic Browning in Apple Slices," Food Chem., 104, 824-829(2007). https://doi.org/10.1016/j.foodchem.2006.12.050
  3. Kim, Y. J., Nam, S. U., Chae, H. S., Lee, S. G. and Song, K. B., "Aqueous Chlorine Dioxide Treatment Decreases Microbial Contamination and Preservers Sensory Properties of Mackerel During Storage," J. Food Sci. Nutr., 12, 181-184(2007). https://doi.org/10.3746/jfn.2007.12.3.181
  4. Korn, C., Ansdrew, R. C. and Escobar, M. D., "Development of Chlorine Dioxide-related by-product Models for Drinking Water Treatment," Water Res., 36, 330-342(2002). https://doi.org/10.1016/S0043-1354(01)00194-4
  5. Navalon, S., Alvaro, M. and Garcia, H., "Chlorine Dioxide Reaction with Selected Amino Acids in Water," J. Hazard. Mater., 164, 1089-1097(2009). https://doi.org/10.1016/j.jhazmat.2008.09.010
  6. Du, J. H., Fu, M. R., Li, M. M. and Xia, W., "Effects of Chlorine Dioxide Gas Postharvest Physiology and Storage Quality of Green Bell Pepper," Agric. Sci. China, 6(2), 214-219(2007). https://doi.org/10.1016/S1671-2927(07)60037-6
  7. Jin, R. Y., Hu, S. Q., Zhang, Y. G. and Bo, T., "Concentrationdependence of the Explosion Characteristics of Chlorine Dioxide gas," J. Hazard. Mater., 166, 842-847(2009). https://doi.org/10.1016/j.jhazmat.2008.11.124
  8. Ostroha, J., Pong, M., Lowman, A. and Dan, N., "Controlling the Collapse/swelling Transition in Charged Hydrogels," Biomaterials, 25, 4345-4353(2004). https://doi.org/10.1016/j.biomaterials.2003.11.019
  9. Kopecek, J., "Hydrogel Biomaterials: A Smart Future," Biomaterials, 28, 5185-5192(2007). https://doi.org/10.1016/j.biomaterials.2007.07.044
  10. Yunxiao, L., Mary, B. and Park, C., "Hydrogel Based on Interpenetrating Polymer Networks of Dextran and Gelatin for Vascular Tissue Engineering," Biomaterials, 30, 196-207(2009). https://doi.org/10.1016/j.biomaterials.2008.09.041
  11. Zhang, H., Ju, X. J., Xie, R., Cheng, C. J., Ren, P. W. and Chu, L. Y., "A Microfluidic Approach to Fabricate Monodisperse Hollow or Porous Poly(HEMA-MMA) Microspheres Using Single Emulsions as Templates," J. Colloid Interface Sci., 336, 235-243 (2009). https://doi.org/10.1016/j.jcis.2009.03.070
  12. Donni, C., Robinsion, D. N., Colombo, P., Giordano, F. and Peppas, N. A., "Preparation of Poly(methacrylic acid-g-poly(ethylene glycol)) Nanospheres from Methacylic Monomers for Pharmaceutical Applications," Int. J. Pharm., 245, 83-91(2002). https://doi.org/10.1016/S0378-5173(02)00335-6
  13. Hoffman, A. S., "Hydrogels for Biomedical Application," Adv. Drug Deliv. Rev., 43, 3-12(2002).
  14. Reverchon, E., Cardea, S. and Rappo, S., "Production of Loaed PMMA Structures Using the Supercritical $CO_2$ Phase Inversion Process," J. Membr. Sci., 273, 97-105(2006). https://doi.org/10.1016/j.memsci.2005.09.042