• Title/Summary/Keyword: class fields

Search Result 527, Processing Time 0.025 seconds

NEW BOUNDS FOR FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FIELDS

  • Isikay, Sevcan;Pekin, Ayten
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1149-1161
    • /
    • 2021
  • In this paper, we present new bounds on the fundamental units of real quadratic fields ${\mathbb{Q}}({\sqrt{d}})$ using the continued fraction expansion of the integral basis element of the field. Furthermore, we apply these bounds to Dirichlet's class number formula. Consequently, we provide computational advantages to estimate the class numbers of such fields. We also give some numerical examples.

ON THE RELATIVE ZETA FUNCTION IN FUNCTION FIELDS

  • Shiomi, Daisuke
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.455-464
    • /
    • 2012
  • In the previous paper [8], the author gave a determinant formula of relative zeta function for cyclotomic function fields. Our purpose of this paper is to extend this result for more general function fields. As an application of our formula, we will give determinant formulas of class numbers for constant field extensions.

FORMULAS OF GALOIS ACTIONS OF SOME CLASS INVARIANTS OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 1(mod 12)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.799-814
    • /
    • 2009
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of some class invariants from the generalized Weber functions $\mathfrak{g}_0,\mathfrak{g}_1,\mathfrak{g}_2$ and $\mathfrak{g}_3$ over quadratic number fields with discriminant $D{\equiv}1$ (mod 12).

  • PDF

ON CONTINUED FRACTIONS, FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FUNCTION FIELDS

  • Kang, Pyung-Lyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.183-203
    • /
    • 2014
  • We examine fundamental units of quadratic function fields from continued fraction of $\sqrt{D}$. As a consequence, we give another proof of geometric analog of Ankeny-Artin-Chowla-Mordell conjecture and bounds for class number, and study real quadratic function fields of minimal type with quasi-period 4.

GENERATION OF RING CLASS FIELDS BY ETA-QUOTIENTS

  • Koo, Ja Kyung;Shin, Dong Hwa;Yoon, Dong Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.131-146
    • /
    • 2018
  • We generate ring class fields of imaginary quadratic fields in terms of the special values of certain eta-quotients, which are related to the relative norms of Siegel-Ramachandra invariants. These give us minimal polynomials with relatively small coefficients from which we are able to solve certain quadratic Diophantine equations concerning non-convenient numbers.