ELLIPTIC MODULES OF RANK ONE AND CLASS FIELDS OF FUNCTION FIELDS SUNGHAN BAE, HWAN YUP JUNG ABSTRACT. We obtained some class fields associated to an order R of a function field and evaluated the valuation of the invariant $\xi(\mathfrak{r})$ for an invertible ideal \mathfrak{r} of R. ## 0. Introduction Let K be a global function field over a finite field \mathbb{F}_q , ∞ be a fixed place of degree δ , and A be the subringof K consisting of those elements which are regular outside ∞ . For an order R of A Hayes[2] introduced elliptic R-module and using this generated some class fields of K explicitly. He also obtained some other class fields using sgn-normalized elliptic A-modules [3]. In this note we generalized the notion of sgn-normalized to invertible elliptic R-modules and obtained some class fields associated to R. We also evaluated the valuation of the invariant $\xi(\mathfrak{c})$ for an invertible ideal \mathfrak{c} of R using the value of partial zeta function associated to \mathfrak{c} -in the case that the field of constants of R is equal to that of A. ## 1. Invertible Elliptic Modules on Orders A subring R of A which contains 1 and has K as its field of fractions is called an *order* in A. Let $\mathfrak{f} = \{x \in K : xA \subset R\}$ be the conductor of R, and $\mathbb{F}_{q'}$ the field of constants in R. Then \mathbb{F}_q is a finite extension of $\mathbb{F}_{q'}$. Let H_R be the *Hilbert class field* of R as defined in [2]. Then H_R corresponds to the subgroup $J_R = K^* \cdot \pi^{\mathbb{Z}} \cdot U_R$ of the group J_K of ideles Received January 15, 1996. Revised December 10, 1996. ¹⁹⁹¹ AMS Subject Classification: Primary 11R37, Secondary 11G09. Key words and phrases: Bergman space, Toeplitz operators, Essential norm. Partially supported by RCAA-KOSEF-95. of K, where π is a uniformizer at ∞ and $U_R = \prod_{v \ finite} R_v^* \times A_\infty^*$. Here R_v is the completion of R at v. Let K_{∞} be the completion of K at ∞ and C the completion of the algebraic closure of K_{∞} . For the elementary theory of elliptic R-modules we refer to [2]. We say that an elliptic Rmodule (or, Drinfeld R-module) ρ of rank 1 over C is an invertible elliptic R-module if ρ is isomorphic to the elliptic R-module $\rho^{\mathfrak{a}}$ associated to an invertible ideal \mathfrak{a} of R. Then H_R is the smallest extension field of K with the property that every invertible elliptic R-module is isomorphic to an elliptic R-module defined over H_R . From now on we mean by an elliptic R-module an invertible elliptic R-module unless otherwise stated. We denote by PicR the group of all the isomorphism classes of invertible ideals of R and h_R its order. Let $\mathcal{I}(\mathfrak{f})$ be the group of all the fractional ideals of A prime to f and $\mathcal{P}(\mathfrak{f})$ be the subgroup of all the principal ideals xA with $x \in R$ and prime to \mathfrak{f} . Denote by $\mathcal{R}_{\mathfrak{f}}$ the qutient $\mathcal{I}(\mathfrak{f})/\mathcal{P}(\mathfrak{f})$. Then \mathcal{R}_{f} is isomorphic to Pic R via the map induced by $\mathfrak{a} \mapsto \mathfrak{a} \cap R$. Let h_K be the class number of the field K. Then ([2], Theorem 1.5) $$h_R = h_K \delta \frac{q' - 1}{q - 1} \frac{|(A/\mathfrak{f})^*|}{|(R/\mathfrak{f})^*|}.$$ PROPOSITION 1.1. ([2] Theorem 8.10) i) $Gal(H_R/K)$ is isomorphic to $Pic\,R$. - ii) H_R/K is the class field to the group $\mathcal{P}(\mathfrak{f})$. - iii) The only places dividing f can ramify in H_R/K . - iv) The field of constants of H_R has degree δ over \mathbb{F}_q . Denote by $\kappa(\infty)$ the residue field at ∞ . Let σ be an $\mathbb{F}_{q'}$ -automorphism of $\kappa(\infty)$. Then, for a sign function sgn of K_{∞}^* , the composite $\sigma \circ sgn$ is called a twisting of sgn by σ , or a twisted sign function which generalizes the notion of twisting in [3] Let ρ be an invertible elliptic R-module. We say that ρ is normalized if the leading coefficient $s_{\rho}(x)$ of ρ_x belongs to $\kappa(\infty)$ for any $x \in R \setminus \{0\}$. For a normalized elliptic R-module ρ , the leading coefficient map s_{ρ} can be extended to a twisted sign function as in the case R = A (see [3]). Now fix a sign function sgn. We say that an invertible elliptic R-module ρ is sgn-normalized if ρ is normalized and s_{ρ} is equal to a twisting of sgn. Then as in the case of R = A every invertible elliptic R-module is isomorphic to a sgn-normalized elliptic R-module. LEMMA 1.2. δ is the greatest common divisor of deg x's, $x \in R$. PROOF. It is well known that δ is the greatest common divisor of $\deg x$'s, $x \in A$. Choose x_1, x_2, \ldots, x_r in A and m_1, m_2, \ldots, m_r in \mathbb{Z} such that $$\delta = \sum m_i \deg x_i. \quad ,$$ Pick an element $y \in \mathfrak{f}$ of degree m. Let $d_i = g.c.d.(deg \, x_i, m)$. Then $D_i = \frac{deg \, x_i}{d_i} + \frac{m}{d_i} n_i$ is a large prime number for some integer n_i by the Dirichlet theorem on arithmetic progression. We can choose n_i so that D_i 's are all distinct and prime to m. Then $g.c.d.\{deg \, x_iy^{n_i}\} = g.c.d.\{d_i\}$. But since $\delta \mid m$ and $\delta = g.c.d.\{deg \, x_i\}$, $\delta = g.c.d.\{d_i\}$. Now the result follows from the fact that x_iy^n lies in R. Let Γ be an R-lattice in C homothetic to some invertible ideal of R. We call such a lattice invertible R-lattice. We say that an invertible R-lattice Γ is special if its associated elliptic R-module ρ^{Γ} is sgn-normalized. For an invertible R-lattice Γ in C define $\xi(\Gamma)$ to be an element of C^* so that $\xi(\Gamma)\Gamma$ is special. Then $\xi(\Gamma)$ is determined up to multiplication by elements of $\kappa(\infty)^*$. For an integral ideal \mathfrak{a} of R, let $\rho_{\mathfrak{a}}$ be the monic generator of the ideal generated by $\rho_{\mathfrak{a}}, \mathfrak{a} \in \mathfrak{a}$. Then the elliptic module $\mathfrak{a} * \rho$ is defined to be the unique elliptic module satisfying $(\mathfrak{a} * \rho)_x \cdot \rho_{\mathfrak{a}} = \rho_{\mathfrak{a}} \cdot \rho_x$. Then we have the following lemma whose proof is straightforward. LEMMA 1.3. i) For $x \in R$, we have $(x) * \rho = s_{\rho}(x)^{-1} \rho s_{\rho}(x)$. - ii) $(\omega^{-1}\rho\omega)_{\mathfrak{a}} = \omega^{-q^{\deg \mathfrak{a}}}\rho_{\mathfrak{a}}\omega$, for any $\omega \in C$ and any integral ideal \mathfrak{a} of R. - iii) $s_{\mathfrak{a}*\rho} = \sigma^{\deg \mathfrak{a}} \circ s_{\rho}$, where σ is the qth power map and \mathfrak{a} is an ideal of R. LEMMA 1.4. Let ρ_1 and ρ_2 be two isomrphic sgn-normalized elliptic R-modules. Then $$s_{\rho_1} = s_{\rho_2}.$$ PROOF. Pick $c \in C$ such that $\rho_2 = c^{-1}\rho c$. Then $c^{q^{\delta}-1} \in \kappa(\infty)^*$. Write $a = c^{q^{\delta}-1}$. Then $s_{\rho_2}(x) = a^{\deg x/\delta} s_{\rho_1}(x)$. Since their corresponding sign functions are the same, a must be 1 from Lemma 4.2 of [3]. LEMMA 1.5. For each invertible elliptic R-module ρ there exist exactly, $\frac{q^{\delta}-1}{q'-1}$ distinct sgn-normalized elliptic R-modules which are isomorphic to ρ . PROOF. Let ρ be a sgn-normalized elliptic R-module. For each $\alpha \in \kappa(\infty)^*$, $\alpha^{-1}\rho\alpha$ is sgn-normalized. From the proof of the above lemma any sgn-normalized elliptic R-module isomorphic to ρ is of this form. Now the result follows from the fact that $\alpha^{-1}\rho\alpha = \beta^{-1}\rho\beta$ if and only if $\alpha/\beta \in \mathbb{F}_{q'}^*$. We have the following important property of invertible R-modules. This property will be used throughout this section. LEMMA 1.6. Let ρ be an invertible R-module and f_R be the dimension of $\mathbb{F}_{q'}$ over \mathbb{F}_p . Then f_R is the greatest common divisor of the exponents m of all those monomials X^{p^m} which appear in some ρ_a , $a \in R$, with nonzero coefficient. PROOF. Let d be the greatest common divisor of the exponents m of all those monomials X^{p^m} which appear in some ρ_a , $a \in R$, with nonzero coefficient. Then it is known that $f_R \mid d$ ([1], Corollary 3.9). Since any invertible R-modules are patterned alike ([2], Proposition 8.7), we may assume that $\rho = \rho^{\mathfrak{p}}$ for some prime ideal \mathfrak{p} of R prime to the conductor \mathfrak{f} . Note that $Aut(\rho) = \mathbb{F}_{p^d}^*$. Since $Aut(\rho)$ is isomorphic to $\{\omega \in C \mid \omega \mathfrak{p} = \mathfrak{p}\}$, we have that $\omega \mathfrak{p} = \mathfrak{p}$ for all $\omega \in \mathbb{F}_{p^d}^*$. Choose $x \in \mathfrak{p}$, $y \in \mathfrak{f}$ so that x + y = 1. Then $$\omega = \omega x + \omega y.$$ Hence $\omega \in R$, and so $\omega \in \mathbb{F}_{q'}$. Let ρ be a sgn-normalized elliptic R-module. Then there exists $w \in C^*$ such that $\rho' = w\rho w^{-1}$ is defined over H_R . By Lemma 1.2 $w^{q^{\delta}-1} \in H_R$. Let $w_0 = w^{q'-1}$. Put $\tilde{H}_R = H_R(\omega_0)$. Let PicR be the quotient group of the group of invertible ideals modulo the subgroup of principal ideals generated by an element $x \in R$ with sgn(x) = 1. LEMMA 1.7. Let \mathfrak{P} be a prime divisor of H_R which does not lie over the conductor \mathfrak{f} of R and let $Norm(\mathfrak{P}) = xA$ with $x \in R$. Then $s_{\rho}(x)$ belongs to $\mathbb{F}_{q'}$ modulo \mathfrak{P} . PROOF. Except using Lemma 1.6 the proof is almost the same as that of [2], Lemma 9.4. Using Lemma 1.7 and following the proof of [3], Proposition 4.7, we get PROPOSITION 1.8. Let \mathfrak{P} be a finite place of H_R which does not lie over \mathfrak{f} and does not ramify in $H_R(\omega)/H_R$. Let $\tau_{\mathfrak{P}}$ be the Frobenius automorphism of $H_R(\omega)$ over H_R associated to \mathfrak{P} . Let $x_{\mathfrak{P}}$ be a generator of the ideal $Norm(\mathfrak{P})$ in A. Then we have - i) $\omega^{1-\tau_{\mathfrak{P}}} s_{\rho}(x_{\mathfrak{P}}) \in \mathbb{F}_{q'}$ - ii) $\tau_{\mathfrak{P}}\rho = s_{\rho}(x_{\mathfrak{P}})^{-1} \cdot \rho \cdot s_{\rho}(x_{\mathfrak{P}}).$ THEOREM 1.9. (cf; [3] §4) i) $Gal(\tilde{H}_R/K)$ is isomorphic to $Pi\tilde{c}R$, and $$[\tilde{H}_R:K] = \frac{q^{\delta} - 1}{q' - 1} \cdot h_R.$$ - ii) \tilde{H}_R/K is unramified at the finite places prime to \mathfrak{f} . - iii) \tilde{H}_R/H_R is totally ramified at ∞ . - iv) A finite place \mathfrak{p} prime to \mathfrak{f} splits completely in \hat{H}_R/K if and only if $\mathfrak{p} = xA$ with $x \in R$ and $sgn(x) \in \mathbb{F}_{q'}$. - v) Let \tilde{B} be the integral closure of A in \tilde{H}_R . Then for a sgn-normalized elliptic R-module ρ and an ideal \mathfrak{a} of R prime to \mathfrak{f} , the extended ideal $\mathfrak{a}\tilde{B}$ is a principal ideal and generated by the constant term $D(\rho_{\mathfrak{a}})$ of $\rho_{\mathfrak{a}}$. - vi) For a given sgn-normalized R-module ρ and an ideal \mathfrak{a} of A prime to \mathfrak{f} , we have $\tau_{\mathfrak{a}}\rho = \mathfrak{a} * \rho$. PROOF. Since the proof is mostly the same as in [3] except vi), we only prove vi) in the case that $\mathfrak{a} = \mathfrak{p}$, a prime ideal. We know from [2], Theorem 8.5 that $\tau_{\mathfrak{p}}\rho$ and $\mathfrak{p} * \rho$ are isomorphic, so that $\tau_{\mathfrak{p}}\rho = a^{-1}(\mathfrak{p} * \rho)a$ for some $a \in C$. Since $s_{\mathfrak{p}*\rho}(x) = s_{\rho}(x)^{N\mathfrak{p}} = s_{\rho}(x)^{\tau_{\mathfrak{p}}} = s_{\tau_{\mathfrak{p}}\rho}(x)$, we have $a \in \kappa(\infty)^*$ by Lemma 1.2. We have to show that $a \in \mathbb{F}_{q'}$. Pick $y \in R$ so that the coefficient α of $X^{q'}$ of ρ_y is nonzero(cf: Lemma 1.6). One can choose \mathfrak{p} so that \mathfrak{p} is prime to \mathfrak{f} and α . Then for a place \mathfrak{P} of H_R which divide \mathfrak{p} , $\tau_{\mathfrak{p}}$ and $\mathfrak{p} * \rho$ have equal reduction. Then a is an automorphism of this reduction, and so a must be in $\mathbb{F}_{q'}$ by our choice of \mathfrak{p} . Since we can find representatives of PicR by such prime ideals \mathfrak{p} , we are done. We call the field \tilde{H}_R the normalizing field of (R, sgn, ∞) . Then $H_R(w_0)$ is the class field associated to the subgroup $$J_R' = K^* \pi^{\mathbb{Z}} U_R',$$ where $U_R' = \{(u_v) \in U_R : sgn(u_\infty) = 1\}$ (cf [2]). Let \mathfrak{m} be an ideal of R which is prime to \mathfrak{f} and ρ a sgn-normalized module. Let $\Lambda_{\mathfrak{m}}$ be the set of \mathfrak{m} -torsion points of ρ . Then $$\Lambda_{\mathfrak{m}} \simeq R/\mathfrak{m} \simeq A/\mathfrak{m}.$$ Put $\tilde{K}_{\mathfrak{m}} = \tilde{H}_R(\Lambda_{\mathfrak{m}})$ be the field generated by m-torsion points of ρ over \tilde{H}_R . Exactly the same proof as in the case R = A would give the following theorem. THEOREM 1.10. i) $\tilde{K}_{\mathfrak{m}}$ is abelian over K. - ii) $Gal(\tilde{K}_{\mathfrak{m}}/\tilde{H}_R) \simeq (A/\mathfrak{m})^*.$ - iii) Let $\lambda \in \Lambda_{\mathfrak{m}}$ and $\sigma_{\mathfrak{a}}$ be the Artin automorphism of $Gal(\tilde{K}_{\mathfrak{m}}/K)$ associated to the ideal \mathfrak{a} . Then $$\lambda^{\sigma_{\mathfrak{a}}} = \rho_{\mathfrak{a}}(\lambda).$$ - iv) Let G_{∞} be the decomposition group of $\tilde{K}_{\mathfrak{m}}/K$ at ∞ . Then G_{∞} is the inertia group at ∞ and isomorphic to $\kappa(\infty)^*$. - v) Let $H_{\mathfrak{m}}$ be the fixed field of $\tilde{K}_{\mathfrak{m}}$ under G_{∞} and $N_{\mathfrak{m}}^-: \tilde{K}_{\mathfrak{m}} \longrightarrow H_{\mathfrak{m}}$ be the corresponding norm map. Then $N_{\mathfrak{m}}^-(\tilde{K}_{\mathfrak{m}}^*)$ consists of totally positive elements. Here an element x is said to be totally positive if $sgn(\sigma(x)) = 1$, for any automorphism σ over K. - vi) For $\lambda \in \Lambda_{\mathfrak{m}}$ and $\sigma \in Gal(\tilde{K}_{\mathfrak{m}}/K)$, $\lambda^{\sigma-1}$ is a unit in the ring of integers of $\tilde{H}_{\mathfrak{m}} = \tilde{H}_R H_{\mathfrak{m}}$, the fixed field of $\mathbb{F}_{q'} \subset Gal(\tilde{K}_{\mathfrak{m}}/\tilde{H}_R)$. 2. $$v_{\infty}(\xi(\mathfrak{c}))$$ In this section we assume that q' = q. For an integral ideal \mathfrak{c} of R define the partial zeta function $$\zeta_{\mathfrak{c}}(s) = \sum_{r \in \mathfrak{c}} |x|_{\infty}^{-s}.$$ Put $S = q^{-s}$. Then $$\zeta_{\mathfrak{c}}(s) = Z_{\mathfrak{c}}(S) = \sum_{x \in \mathfrak{c}} S^{\deg x}.$$ In the case of R = A it is shown in ([1], (4.10)) that $$v_{\infty}(\xi(\mathfrak{c})) = -Z'_{\mathfrak{c}}(1)/\delta.$$ In fact, this holds for any order R of A and the proof is exactly the same. Now we are going to evaluate $Z'_{\mathfrak{c}}(1)$ for any invertible integral ideal \mathfrak{c} of R. For each integer i we define $$i^* = inf\{n : n \ge i, n \equiv 0 \quad (\delta)\}$$ and $$i_* = \sup\{n : n \le i, n \equiv 0 \pmod{\delta}\}.$$ For an invertible integral ideal \mathfrak{c} of R of degree e, let $$T_t(\mathfrak{c}) = \{x \in \mathfrak{c} : deg \ x \leq t\delta + c_*\} \quad \text{and} \quad u(t) = u_{\mathfrak{c}}(t) = dim_{\mathbb{F}_q} T_t(\mathfrak{c}).$$ Take an element $f \in \mathfrak{f}$ of degree r. We usually take f = 1 in case R = A. Define $$m = m_{\mathfrak{c},f} = (c + 2g - 1)^* - c_* + r$$ and $n = n_{\mathfrak{c},f} = u(\frac{m}{\delta}),$ where g is the genus of the smooth curve associated to K. LEMMA 3.1. If $t \geq \frac{m}{\delta}$, then $$u(t) = n + t\delta - m.$$ PROOF. Let $\mathfrak{c}' = \mathfrak{c}A$ and $T_t(\mathfrak{c}') = \{x \in \mathfrak{c}' : \deg x \leq t\delta + c_*\}$. By the Riemann-Roch theorem, $\dim_{\mathbb{F}_q} T_t(\mathfrak{c}')$ increases by δ if $t \geq \frac{(c+2g-1)^*-c_*}{\delta}$. Since $fT_t(\mathfrak{c}') \subset T_{t+r}(\mathfrak{c})$ and $\dim_{\mathbb{F}_q} T_t(\mathfrak{c})$ increases at most by δ , $\dim_{\mathbb{F}_q} T_t(\mathfrak{c})$ increases by δ for $t \geq m$. Hence we get the result. Let $$F_t(\mathfrak{c}) = \{ x \in \mathfrak{c} : deg \ x = t\delta + c_* \}$$ and $$\ell_f(\mathfrak{c}) = -\sum_{t=0}^{\frac{m}{\delta}} t\delta |F_t(\mathfrak{c})|.$$ Then by Lemma 3.1 $$Z_{\mathfrak{c}}(S) = \sum_{t=1}^{\frac{m}{\delta}} |F_{t}(\mathfrak{c})| S^{t\delta+c_{\star}} + \sum_{t=1+\frac{m}{\delta}}^{\infty} (q^{n+t\delta-m} - q^{n+(t-1)\delta-m}) S^{t\delta+c_{\star}}$$ $$= \sum_{t=1}^{\frac{m}{\delta}} |F_{t}(\mathfrak{c})| S^{t\delta+c_{\star}} + q^{n} (q^{\delta} - 1) \frac{S^{m+\delta+c_{\star}}}{1 - q^{\delta} S^{\delta}}.$$ Thus $$\begin{split} Z_{\mathfrak{c}}'(1) &= -\ell_{\mathfrak{f}}(\mathfrak{c}) + c_{*} \sum_{t=1}^{\frac{m}{\delta}} |F_{t}(\mathfrak{c})| - q^{n}(m+\delta+c_{*}) + \frac{\delta q^{n+\delta}}{q^{\delta}-1} \\ &= -\ell_{\mathfrak{f}}(\mathfrak{c}) + c_{*}(q^{n}-1) - q^{n}(m+\delta+c_{*}) + \frac{\delta q^{n+\delta}}{q^{\delta}-1} \\ &= -\ell_{f}(\mathfrak{c}) - c_{*} - mq^{n} + \frac{\delta q^{n}}{q^{\delta}-1}. \end{split}$$ Therfore we get Proposition 3.2. We have $$\delta v_{\infty}(\xi(\mathfrak{c})) = \ell_f(\mathfrak{c}) + c_* + m_{\mathfrak{c},f} q^{n_{\mathfrak{c},f}} - \frac{\delta q^{n_{\mathfrak{c},f}}}{q^{\delta} - 1}.$$ ## References - 1. E. U. Gekeler, *Drinfeld Modular Curves*, Lecture Notes in Math., vol 1231, Springer-Verlag, Berlin Heidelberg, 1986. - 2. D. Hayes, Explicit Class Field Theory in Global Function Fields, Studies in Algebra and Number Theory, G.C. Rota ed. (1979), Academic Press, 173-219. - 3. ______, Stickelberger Elements in Function Fields, Compositio Math. 55 (1985), 209-239. Department of Mathematics KAIST Taejon 305-701, Korea