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ELLIPTIC MODULES OF RANK ONE AND
CLASS FIELDS OF FUNCTION FIELDS

SUNGHAN BAE, HWAN YUP JUNG

ABSTRACT. We obtained some class fields associated to an order R of
a function field and evaluated the valuation of the invariaut £(c) for an
invertible ideal ¢ of R.

0. Introduction

Let I be a global function field over a finite ficld Fy, oo be a fixed place
of degree 6, and A be the subringof K consisting of those elements which
are regular outside co. For an order R of A Hayes[2] introduced elliptic
R-module and using this generated some class ficlds of I explicitly. He
also obtained some other class fields using sgn-normalized elliptic A-
modules [3]. In this note we generalized the notion of sgn-normalized to
invertible elliptic R-modules and obtained some class fields associated to
R. We also evaluated the valuation of the invariant £(c) for an invertible
ideal ¢ of R using the value of partial zeta function associated to ¢4n the
case that the field of constants of R is equal to that of A.

1. Invertible Elliptic Modules on Orders

A subring R of A which contains 1 and has K as its field of fractions
is called an orderin A. Let f={z € K : 24 C R} be the conductor of
R, and Fy the field of constants in R. Then F, is a finite extension of
Fp. Let Hp be the Hilbert class field of R as defined in [2]. Then Hg

corresponds to the subgroup Jg = K*-7%.Ug of the group Jy of ideles
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of i, where 7 is a uniformizer at co and Up = vainite Ry < AY_. Here
R, is the completion of R at v. Let K, be the completion of IV at co
and C the completion of the algebraic closureof K .. For the elementary
theory of elliptic R-modules we refer to [2]. We say that an elliptic R-
module (or, Drinfeld R-module) p of rank 1 over C is an invertible elliptic
R-module if p is isomorphic to the elliptic R-module p® associated to an
invertible ideal a of R. Then Hpg is the smallest extension field of I with
the property that every invertible elliptic R-module is isomorphic to an
elliptic R-module defined over Hg. From now on we mean by an elliptic
R-module an invertible elliptic R-module unless otherwise stated. We
denote by Pic R the group of all the isomorphism classes of invertible
ideals of R and hp its order. Let Z(f) be the group of all the fractional
ideals of A prime to f and P(f) be the subgroup of all the principal ideals
A with € R and prime to f. Denote by R; the qutient Z(§)/P(f). Then
Ry is isomorphic to Pic R via the map induced by a — an R. Let hy
be the class number of the field A" Then ([2], Theorem 1.5)

¢ — 1](A/§)]
SRR T
PRrROPOSITION 1.1. ([2] Theorem 8.10) 1) Gal(Hg/K) is isomorphic
to Pic R.
ii) Hr/K is the class field to the group P(f).
iii) The only places dividing f can ramify in Hg /.
iv) The field of constants of Hp has degree § over F,.

Denote by k(oc) the residue field at oo. Let o be an F g -automorphism
of k(00). Then, for a sign function sgn of K* , the composite o o sgn is
called a twisting of sgn by o, or a twisted sign function which generalizes
the notion of twisting in [3] Let p be an invertible elliptic R-module. We
say that p is normalized if the leading coefficient s,(z) of p, belongs to
k(oco) for any # € R\ {0}. For a normalized elliptic R-module p, the
leading coeflicient map s, can be extended to a twisted sign function as
in the case R = A (see [3]). Now fix a sign function sgn. We say that an
invertible elliptic R-module p is sgn-normalized if p is normalized and
s, 1s equal to a twisting of sgn. Then as in the case of R = A every
invertible elliptic R-module is isomorphic to a sgn-normalized elliptic
R-module.
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LEMMA 1.2. ¢ is the greatest common divisor of degx’s, z € R.

ProoF. It 1s well known that é is the greatest common divisor of
degz’s, z € A. Choose z1,29,....2,in A and m;,my,....m, in Z such

that
b = Z m; deg x;.

Pick an element y € f of degree m. Let d; = g.c.d.(deg x;,m). ThenD; =
i% + g7 i1s a large prime number for some integer n; by the Dirichlet
theorem on arithmetic progression. We can choose n; so that D,’s are
all distinct and prime to m. Then g.c.d.{degz;y"'} = g.c.d.{d;}. But
since 6 | m and é = g.c.d{degx,}, § = g.c.d{d,}. Now the result follows
from the fact that z;y" lies in R.

Let I be an R-lattice in €' homothetic to some invertible ideal of R.
We call such a lattice tnvertible R-lattice. We say that an invertible R-
lattice I is specialif its associated elliptic R-module p!' is sgn-normalized.
For an invertible R-lattice I' in C define £(T") to be an element of C*
so that £(I")I is special. Then £(T') is determined up to multiplication
by elements of x(c0)*. For an integral ideal a of R, let p, be the monic
generator of the ideal generated by p,.a € a. Then the elliptic module
a* p is defined to be the unique elliptic module setisfying (a = p), - po =
pa-pz. Then we have the following lermina whose proof is straightforward.

LEMMA 1.3. i) For r € R, we have (x)* p=s,(r)  ps,(a).

. _ _gde9 @ . .

i) (W lpw)g =w™ 9 " paw, for any w € C and any integral ideal a
of R.

1ii) Sqe, = 0%9%0s,, where o is the qth power map and a is an ideal
of R.

LEMMA 1.4. Let p; and ps be two isomrphic sgn-normalized elliptic
R-modules. Then
Sp1 == Spy-
PROOF. Pick ¢ € C such that p, = ¢71pc. Then e’ e k(oo)*. Write
a=c? 1. Then sp,(a) = a?®97/%s (). Since their corresponding sign
functions are the same, a must be 1 from Lemma 4.2 of [3].
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LEMMA 1.5. For each invertible elliptic R-module p there exist ex-
&
actly, %,—:11- distinct sgn-normalized elliptic R-modules which are isomor-
phic to p.

PROOF. Let p be a sgn-normalized elliptic R-module. For cach a €
k(o0)*, a7 1pa is sgn-normalized. From the proof of the above lemma
any sgn-normalized elliptic R-module isomorphic to p is of this form.
Now the result follows from the fact that o !pa = 37!'p3 if and only
if a/BeF;.

We have the following important property of invertible R-modules.
This property will be used throughout this section.

LEMMA 1.6. Let p be an invertible R-module and fr be the dimen-
sion of For over F,. Then fg is the greatest common divisor of the ex-
ponents m of all those monomials X?" which appear in some p,, a € R,
with nonzero coefficient.

PROOF. Let d be the greatest common divisor of the exponents m
of all those monomials X?” which appear in some p,, a € R, with
nonzero coefficient. Then it is known that fr | d ([1], Corollary 3.9).
Since any invertible R-modules are patterned alike ([2], Proposition 8.7),
we may assume that p = pP for some prime ideal p of R prime to the
conductor f. Note that Aut(p) = F;d. Since Aut(p) is isomorphicto
{w € C | wp = p}. we have that wp = p for all w € F*,. Choose z € p.
y € f so that « +y = 1. Then

W= wr fwy.

Hence w € R, and so w € F/.

Let p be a sgn-normalized elliptic R-module. Then there exists w €
C* such thatp' = wpw™' is defined over Hz. By Lemma 1.2 w1 e
Hp. Let wyg = wi =1, Put I:IR = Hp(wg). Let PicR be the quotient
group of the group of invertible ideals modulo the subgroup of principal
ideals generated by an element r € R with sgn(z) = 1.

LemMMA 1.7. Let P be a prime divisor of Hg which does not lie over
the conductor f of R and let Norm(‘B) = A with * € R. Then s,(x)
belongs to Fy modulo B.
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PROOF. Except using Lemma 1.6 the proof is almost the same as
that of [2], Lemma 9.4.

Using Lemma 1.7 and following the proof of [3], Proposition 4.7, we
get

PROPOSITION 1.8. Let ‘B be a finite place of Hp which does not
lie over f and does not ramify in Hr(w)/Hg. Let 7y be the Frobenius
automorphism of Hg(w) over Hp associated to . Let xq be a generator
of the ideal Norm(‘B) in A. Then we have

i) wl™™s,(zg) € Fy
i) Tpp = sp(ap) o slagp).

THEOREM 1.9. (cf: [3] §4) i) Gal(Hr/K) is isomorphic to Pic R, and

¢"—1

Hp: K] = -
(Hp : K] 1

hg.

i1) ﬁR/I&' is unramified at the finite places prime to f.

iii) Hp/Hp is totally ramified at co.

iv) A finite place p prime to § splits completely in Hg/K if and only
ifp=2A withz € R and sgn(z) € Fy.

v) Let B be the integral closurc of 4 in Hr. Then for a sgn-
normalized elliptic R-module p and an ideal a of R prime to
f, the extended ideal aB is a principal idex] and generated by the
constant term D(pq) of py.

vi) For a given sgn-normalized R-module p and an ideal a of A prime
to f, we have T4p = a * p.

PROOF. Since the proof is mostly the same as in [3] except vi), we
only prove vi) in the case that a = p, a prime ideal. We know from [2],
Theorem 8.5 that 7,p and p * p are isomorphic, so that r,p = a ' (p*pa
for some a € C. Since sy, (2) = s,(1)VP = s,(2)™ = s;,, (), we have
a € k(00)* by Lemma 1.2. We have to show that a € Fy. Pick y € R so
that the coefficient o of X7 of py is nonzero(cf: Lemma 1.6). One can
choose p so that p is prime to f and «. Then for a place B of Hp which
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divide p, 7y and p * p have equal reduction. Then a is an automorphism
of this reduction, and so @ must be in F, by our choice of p. Since we
can find representatives of PicR by such prime ideals p, we are done.

We call the field Hp the normalizing field of (R,sgn,oc). Then
Hpg(wg) is the class field associated to the subgroup

(IR 72 A & J)
JR—~I\ w LRT

where Up = {(u,) € Ug : sgn(us) = 1} (cf [2]). Let m be an ideal of R
which is prime to f and p a sgn-normalized module. Let Ay be the set
of m-torsion points of p. Then

An~R/m~ A/m,

Put Ky, = Hp(Aw) be the field generated by m-torsion points of p over
Hp. Exactly the same proof as in the case R == A would give the
following theorem.

THEOREM 1.10. i) K is abelian over K.
i) Gal(Kn/Hpg) ~ (A/m)*. ]
iii) Let X € Ay and o, be the Artin automorphism of Gal(Iy/K)
associated to the ideal a. Then

A% = pa(A).

iv) Let G be the decomposition group of Ky /K at co. Then G,
is the inertia group at oo and isomorphic to k(oco)*.

v) Let Hy be the fixed field of K, under G and N : Kn —
Hy, be the corresponding norm map. Then N":(f(;) consists of
totally positive elements. Here an element z is said to be totally
positive if sgn(o(z)) = 1, for any automorphiosm o over K.

vi) For A € Ay and 0 € Gal(Kyn/K), A°"Yis a unit in the ring of
integers of Hy = f{RHm, the fixed field of Fy C Gal(f(m/I;[R).
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2. vee(€(c))

In this section we assume that ¢’ = ¢. For an integral ideal ¢ of R
define the partial zeta function ‘

Cels) =) Jal.

T

Put § = ¢7*. Then

Ct(s) = Z;(S) — ZSdEg x

rEc

In the case of R = A it is shown in ([1], (4.10)) that

veo(£(¢)) = —Z((1)/0.

In fact, this holds for any order R of A and the proof is exactly the same.
Now we are going to evaluate Z!(1) for any invertible integral ideal ¢ of
R. For each integer ¢ we define

G=anf{nn>n=0 (9)}

and
iy=sup{n:n<i,n=0 (8)}.

For an invertible integral ideal ¢ of R of degree ¢, let
Ti(c) ={z €c:degx <tb+c.} and wu(t) = ut) = dimg, Ty(c).

Take an element f € f of degree r. We usually take f = 1 in case R = A.
Define

m:mc,f:(c+2g—1)*—c*+r and fl:nc,f:u(%),

where ¢ is the genus of the smooth curve associated to K.

LEMMA 3.1. Ift > %, then

u(t) =n+té —m.
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PROOF. Let ¢! = cA and T (¢') = {x € ¢’ : dega <6 + ¢,}. By the
Riemann-Roch theorem, dimy, Tt( ¢') increases by 8 if t > M-%l—)—:i.
Since fTy(c') C Tyy4,(c) and dmn . Ti(c) increases at most by 8, dimg, Ty(c)
increases by 6 for t > m. Hence we get the result.

Let
Fi(¢)={z €c:degax =té +¢,}

and

tp(e) = = S8l Fi(c).
t=0

Then by Lemma 3.1

L;-
Zc( ) — Z |Ft C)|St6+c' + Z n+tb—m qn-{—(t~])6—m)51é+m
t=1 t=14+m2
3 o 5 Sm+6+c,
= Z [F(c)|S™ T +¢"(¢" - 1)1Tq—5§5'-
=1
Thus
T 6qn+6
Zi{(1) = —6(c) + cu Y _|Fe) = q"(m+ 6+ c,) + pr
=1
6qn+6
= *6{(() + C*(qn — 1) — qn(m + 6 + Cy ! + F_—l-
bq™
= —0¢(c) — ¢, — mg™ _
r(e) = e —mg T
Therfore we get
PROPOSITION 3.2, We have
oqnet

6voc(§(c)) = €5(C) + cx + M pq" — —5—
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