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ON THE RELATIVE ZETA FUNCTION
IN FUNCTION FIELDS

DAISUKE SHIOMI

ABSTRACT. In the previous paper [8], the author gave a determinant for-
mula of relative zeta function for cyclotomic function fields. Our purpose
of this paper is to extend this result for more general function fields. As
an application of our formula, we will give determinant formulas of class
numbers for constant field extensions.

1. Introduction

Let p be a prime. In 1955, Carlitz and Olson [2] provided an expression of
the relative class number of p-th cyclotomic field in terms of a certain classical
determinant, which is known as the Maillet determinant. Many authors have
extended this result (cf. [5], [9]). In particular, Girstmair [3] gave a general-
ization to an imaginary abelian field.

In the function field case, several authors also gave determinant formulas
for class numbers. Let F, be the field with ¢ elements. Let k = F4(T) be the
rational function field over Fy, and A = F,[T] the associated polynomial ring.
Let m € A be a monic polynomial. We denote by A,, the set of all m-torsion
points of the Carlitz module (see Section 2). Let K, = k(A,,). The function
field K,, is called the m-th cyclotomic function field. This function field has
remarkably similar properties of those of cyclotomic field over Q.

We assume that m is irreducible. In 1990s, Rosen gave a determinant for-
mula for the relative class number of K, (cf. [6]), which is regarded as an
analogue of the formula of Carlitz and Olson. Recently, Ahn, Choi, and Jung
generalized the Rosen’s formula to any subfield of cyclotomic function fields
with arbitrary conductor (cf. [1]). On the other hand, in the previous pa-
per [8], the author gave a determinant formula for a relative zeta function of
cyclotomic function field.

Our goal of this paper is to generalize these formulas. Let M be a finite
extension over k which is contained in some cyclotomic function fields. Put
C)(s, M) = (s, M)/((s, M), where ((s, M), ((s, MT) are zeta functions of
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M, and the maximal real subfield of M, respectively. We shall call ¢(=) (s, M)
the relative zeta function of M. First we will show that ¢(=)(s, M) can be
expressed by the polynomial ZJ(W_)(u) of integral coefficients (see Section 2).
The main result of this paper is to construct a matrix Ez(v?) (u), and give the
following determinant formula of relative zeta function:

[T det B57 () = 23 (w)Jar(w)

AET g

A#£L
(see Theorem 3.1), where the matrix E](V)I\) (u) and the polynomial Jy;(u) are
calculated automatically when once M is given (see Section 3). Considering
the case M = K,,, the above formula leads the determinant formula which the
author gave in [8].

As an application of our formula, we will give a class number formula of
M,,, where M, is the constant field extension over M of degree n (see Theorem
3.2). We consider the case n = 1. Then our class number formula derives the
determinant formula of Ahn-Choi-Jung (cf. Theorem 3.2 in [1]).

2. Preparations

In this section, we will provide definitions and basic properties of cyclotomic
function fields, and zeta functions. For details, see [4], [7], [10].

2.1. Cyclotomic function field and Dirichlet characters

Let k be an algebraic closure of k. For x € k and m € A, we define the
following action:

mxa =mp+ p)(@),

where ¢, p are Fg-linear isomorphisms of k defined by ¢ : z — 29, and p :
x +— Tz, respectively. By this action, k& becomes A-module, which is called
the Carlitz module. For a monic polynomial m € A, we denote by A,, the
set of all z € k satisfying m x x = 0. Let K,, = k(A,;,). We call K,, the
m-th cyclotomic function field. Then it is well-known that K,,/k is a Galois
extension, and its Galois group is isomorphic to G,,, where G, is the unit group
of A/mA. We regard F¥ C G, and denote by K the intermediate field of
K, /k corresponding to Fx. Let Py be the prime of k with the valuation ord.
satisfying ords(1/7) = 1. We denote the associated completion of k by koo.
Then K& = koo N K.
Next we put

K= ) Kn,
m:monic

where m runs through all monic polynomials of A. Let M C K be a finite
extension over k. We define the conductor of M as the monic polynomial
m € A of the smallest degree satistying M C K,,. We call M real if M C k.
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Otherwise, we call M imaginary. Put M ™ = M Nk.. Then M7 is the maximal
real subfield of M.

Lemma 2.1. Let M C K be a finite extension of k. Then Py, splits completely
in MT /k, and each prime of M above Pw is totally ramified in M /M.

Proof. This follows from Theorem 12.14 in [7]. O

Next we review basic facts about Dirichlet characters. For a monic polyno-
mial m € A, let X,, be the group of all primitive Dirichlet characters of G,,. We
denote by X the group of all primitive Dirichlet characters (i.e., X = UpnXp,).
Then, by the same argument as in the case of number field, we have a one-
to-one correspondence between finite subgroups of X and intermediate fields
of K /k of finite degree (cf. Chapter 3 in [10]). In particular, we see that K,
corresponds to X,,. Let M C K be a finite extension of k. We denote by Xm
the finite subgroup of X corresponding to M. Put

X]J\}:{xeXMU((a):l forallaEIFqX}.

We see that M corresponds to X]J\}. We will use the next theorem in the later
section.

Theorem 2.1 (cf. [10], Theorem 3.7). Let M C K be a finite extension of k.
For an irreducible monic polynomial Q € A, put

Yio={x<€Xu|x(Q) #0}, Zugo={x€Xum|x(Q) =1}

Then Yar,o/Zwm,q s a cyclic group of order fo, and the order of Zy g is equal
to g, where fq, go are the relative degree of Q in M/k, and the number of
primes of M above Q, respectively.

2.2. Zeta functions and L-functions
For a global function field M over F,, we define the zeta function by
1 -1
aM = (1 - —s) )
o= 1 NP
P:prime
where P runs through all primes of M, and NP is the number of elements

of the residue class field of P. We can easily check that ((s, M) converges
absolutely for Re(s) > 1.

Theorem 2.2 (cf. [7] Theorem 5.9). In the above notations, there is a poly-
nomial Zy(u) with integral coefficients such that

. ) =

Moreover, Zyi(0) =1, Zp(1) = har, where hyy is the class number of M.

We denote by Fy» the extension over I, of degree n. Put M,, = My, and
let has,n be the class number of M,,. Notice that has1 = has.
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Proposition 2.1. In the above notations, we have

H Zym(w) = hpton,

wn=1

where w Tuns through n-th roots of unity.

Proof. This follows from Proposition 8.16 in [7]. O

Next we will review basic facts about L-functions. For a character y € X,
we define the L-function by

s 0 =100

where P runs through all irreducible monic polynomials of A. Let m be the
conductor of x. For a € G, there is the unique element r,, € A satisfying

T = apT"4an 1 T" '+ +ag (n=degr, <degm),

re = o« modm.
Then we define functions Deg and L over G,,, by
Deg(a) =n, L(a)=a, cF;.
Put
GV ={aecG,|L(a)=1}.
Then L(s, x) can be expressed as follows:
1/(1—q'7) if X = X0,

L(S, X) - —sDeg(a)

ZaeG(l) x()q otherwise,

where o is the trivial character (cf. Proposition 4.3 in [7]). Let M C K be a
finite extension of k. By the same arguments as in the case of number fields,
we have

1 N1 )
(2) pgteOW) XEIXIMM ),

where P runs over all primes of M not above P, (cf. Theorem 4.3 in [10]). By
Lemma 2.1 and the equation (2), we have

S, ) = { T Llsx)ja—q 700",

XEX M

AROEE By S rap—

+
XEX
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We define the relative zeta function of M by ¢(7)(s, M) = ((s, M)/{(s, MT).
Then we have

(3) (s, M) =[] Lisx),

XEX
where X;, = Xp \ X;;- We put ZJ(W_)(u) = Zy(u)/Zy+(u) (see Theorem
2.2). Then we have ¢(7) (s, M) = Z;V;)(q_s).

Proposition 2.2. In the above notations, ZI(V;)(U) is a polynomial of integral
coefficients.

Proof. For a non-trivial character x € X, we saw that L(s, x) is a polynomial

of ¢7° with complex coefficients. Hence ZJ(\;)(U) is a polynomial with complex
coefficients. On the other hand, we notice that Zy;(u) and Zys+(u) are poly-
nomials of integral coefficients, and Zs(0) = Zp+(0) = 1 . Therefore Z](V;)(u)
is a polynomial of integral coefficients. (I

In the end of this section, we give a class number formula of constant field
extension. For a positive integer n, put hy, , = hatn/har+ n € Q. In particular,
hysq is the relative class number of M. From Proposition 2.1, we have the
follbwing class number formula:

= 11 250 @).
wnr=1
By the above formula, we see that hz_w,n is an algebraic integer. Hence hz_w,n is
an integer.

3. Determinant formulas for zeta functions

In the previous section, we defined the relative zeta function ¢(~) (s, M) for
a finite extension M C K over k, and we saw that C(’)(s, M) is expressed by
the polynomial Zz(v;) (u). Our goal in this section is to construct a determinant

formula for Zz(w_) (u). As an application of this formula, we will give determinant
formulas for class numbers of constant field extensions over M.

First we give some notations. Let M C K be a finite extension over k of
conductor m. Let Hyy, HJE be subgroups of G,, corresponding to M, and M T,
respectively. We see that Hy, = HyF). Put Ny = [M : k], Nj; = [M* : k],
and Ny, = [M : M*]. Let I@‘qx be the character group of Fy. We define the
subgroup T of fF; as follows:

TM:{X|]FQX|X€XM}7

where X|]F; is the restriction of x to IFqX. Then we see that #T; = N;;, where

#S is the number of elements of a set S. We notice that

x(a) =1 (x € Ty, a € Iny),
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where Iny = Hpy NF. For each A € Ty, fix a ¢y € Xy satisfying 1/1A|]qu =\
Then we have the following decomposition:

(4) X = |J vXilr
AET N
NAL
Let {aq,ao,..., aN;I} be a complete system of representatives for G, /Hj;.

For A € Ty and i,j = 1,2,..., N}, we put
A - - azait
Fi(j)(“): Z )\(L(aiaj 1ﬁ) 1)uDeg( ; B),
BESM

where Sy is a complete system of representatives for Hys/Ips. By using these
polynomials, we define the matrix Ez(v?) (u) by

A A
EJ(W) (u) = (Fz(] )(U))i,j:1,2,...,N;I

for A € Ths. Then we have the following determinant formula of the relative
zeta function.

Theorem 3.1. In the above notations, we have

[T det £ (w) = Z§; (w)Jas (w).

NET)p

A#£L
The polynomial Jy(u) is defined by

Ju@w) = [ T[0-x(@u'=9),
XEX;, QIm

where QQ runs through irreducible monic polynomials dividing m.
Remark 3.1. We consider the case M = K,,,. We notice that T = I@‘qx, and

Sk,, = {1}. Hence the above formula derives the determinant formula which
the author gave in [8].

Remark 3.2. We see that Fi(j)(u) € Z[w][u], where w is a primitive N, ,-th root
()

of unity. In particular, each component of E};’(u) is a polynomial of integral
coefficients if Ny, = [M : Mt] = 2.
Proposition 3.1. In the notations of Theorem 3.1, we have

Tu(w) =]

Qm (1 —u

(1— ufe degQ)gQ

S degcz)gg ’

where fq, fér are relative degrees of Q in M/k, M /k respectively, and gq,
95 are numbers of primes of M, M™ above Q, respectively.



ON THE RELATIVE ZETA FUNCTION IN FUNCTION FIELDS 461

Proof. Let @ be an irreducible monic polynomial dividing m. In the notations
of Theorem 2.1, we have

IT C—x@u*=?) = ] (1-x(@Qu*=?)

XEX M X€YM,Q

1T [T (- eév(@ui=e?)

PEYM @/ ZM,Q YEZM,Q

[T (0-o@u9)”,

PEYM,Q/ZM,Q

where ¢ runs through a complete system of representative for Yar,o/Zn,o-
Noting that Yar,o/Zwm,q is a cyclic group of order fg, we have

H (1 ¢(Q)udegQ) =(1- ule degQ)_
PEYM,Q/ZM,Q
Therefore
[T (- x(@u*t?) = (1 - ufedesQyoe,
XEX M
By the same argument, we have
[T (- x(@ut=®) = (1 —wfades@ys,
XEX};
Hence we obtain Proposition 3.1. O

Remark 3.3. From the above proposition, we see that Jys(u) is a polynomial
of integral coefficients.

Remark 3.4. We assume that m is a power of an irreducible monic polyno-
mial . By Proposition 12.7 in [7], we see that @ is totally ramified in M/k.
Therefore, by Proposition 3.1, we have Jys(u) = 1.

Now we give the proof of Theorem 3.1.

Proof. Let x € X;;, and denote by f, the conductor of x. We see that f,
divides m. Put x = yomy, where m, : G, — GV, is the natural homomorphism.
Then we have

L(s,x) = L(s, X){ H (1 — X(Q)q—sdegQ)}-

Qm
By the equation (3), we obtain

) [T 20 = (I £6on) st

XEX XEX

(6) — 257 T,
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On the other hand, from the equation (4), we have

(7) II 20 = I I ZGsénn).

- XET
XEX A¢A1g XGX

Next we will show that
(8) det B\ (¢7*) = [[ L(s,9s%)
XEXM

for each non-trivial character A € Tys. Fix a non-trivial character A € Tj; and
s € C. For a € G,,, we put
Z w \ *sDeg(ﬁ

BET ()

where T'(a) = ¢ n aH};. We see that F(x,\) is a function over G,,,/H};.
Noting that {al,ag,...,athI} is a complete system of representatives for
G/ Hj;, we obtain

Lis, %) = > f(a)ida(a)g—*Pes®

ozEG(l)

= ZX az au

for x € X;;. We see that {x | x € X},;} is the character group of G,,/H},.
Hence we apply the group determinant formula for the group G,,,/H IJV} and the
function F(x,\) (cf. [10] Lemma 5.26), and obtain

H L(s, 5(1%\) = det(F(az‘a{la )‘))i,j:Lz,...,NA*l'
XEX 7

Notice that

7(0) = {grizs 18 € Sur}

for o € G,,,. Since 1/;,\(04) =1 for all o« € Hys, we have

Flaga;t,\) = dalasa; HDED (67%).

This leads the equation (8). By equations (5), (6), and (7), we have

[T det B (a7%) = 2 (a7*) s ().
XET s
A#£1

Putting u = ¢~*, we obtain Theorem 3.1. (I
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As an application of our formula, we will give determinant formulas for
class numbers of constant field extensions over M. To see this, we recall that

Pt = Honzs ZJ(W_)(w) for a positive integer n. Hence Theorem 3.1 leads the
following class number formula.

Theorem 3.2. In the above notations, we have

IT II detEY ) = hyy o Rasn,

wn=1 AeTyps
A#1

where Ry, is defined by Raryn = [[,n_q Jm(w).

Remark 3.5. Recall that Jys(u) = 1 if m is a power of an irreducible polynomial.
Hence Ryr,, =1 in this case.

Proposition 3.2. In the notations of Proposition 3.1, we have
o (%2 if (fo deg Q.n) = (f deg Q.n) and
Q

9Q = gg for every Q dividing m,
0 otherwise,

where (a,b) is the GCD of a and b.
Proof. We see that

)QQ(fQ deg Q,n)

RM,n =

H (1 _ Wb b) — (1 _ U[a’b])(a7b),

wer=1
where [a, b] is the LCM of a and b (cf. [7] Lemma 8.14). Therefore, by Propo-
sition 3.1, we have
1 — ylfe deg@nlygqo (fo degQ,n)
HJM(WU):H( u+ )++ :
(1- ulfq des Qm])gQ(fQ deg Q,n)

wr=1 Qlm

Fix an irreducible monic polynomial @ dividing m. If (fo deg @, n)=( fg deg Q,
n) and gg = gg, then we apply L’Hopital’s rule and obtain

(1 — ylfe deg@nlyga(fo deg@n)

_ ( [fodeg @, n] )gQ(fQ deg Q,n)
3§ deg Q,n]

_ (f_Q)gQ(fQ degQ,n).
i

(1 — ulfa desQunlyog (fG deg@.m)

u=1

Otherwise,

(1 — ulfedeg@mnl)go(fe deg@n)
= 0.

(1 — ulfa dea@unlygg (/G deg Q)

u=1

This leads Proposition 3.2. O

Remark 3.6. By the above proposition, we see that Ry, is an integer.
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Remark 3.7. Considering the case n = 1 in Theorem 3.2, we have a relative
class number formula for M. This formula coincides with the determinant
formula of Ahn-Choi-Jung (cf. Theorem 3.2 in [1]).

Example 3.1. Let ¢ =3, m = T3. Put
H={1,T+1,T>+2T +1} C G,,.

Let M be the intermediate field of K, /k corresponding to H. Then Iy = {1},
Sy =H, Ny; =2. We put Ty = {Xo, A}, and

a1 =1, as =T?+1, azg =2T%+1.

Then we have

w?+u+1 —2u?—u u?
EJ(\}\)(U) = u? wHu+l —2u—u |, Jy() =1,
—2u? —u u? u?+u+1
and
-3 1 -1 1
EY 1) 1 3 -3 |, EYE 1 -1
-3 1 3 -1 1 1

By applying Theorem 3.1, we have ZI(V*)(u) = det Ez(v?) (u) = 9u* + 9u® +
6u? + 3u + 1. By Theorem 3.2, by = detE](v)I‘)(l) = 28, and hy, =
det EQY (1) det E)Y (—1) = 112.
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