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ON SOME RING CLASS FIELDS BY SHIMURA’S
CANONICAL MODELS

SoYoung Choi and Ja Kyung Koo

Abstract. We construct certain ring class fields over an imaginary qua-
dratic field by making use of Shimura’s canonical models and extend the
result of Chen-Yui ([1] Theorem 3.7.5(2)) to the case where (a, b, N) ̸= N

or (a/N, N) ̸= 1 for a positive integer N > 1.

1. Introduction

When Γ0(N) is the Hecke subgroup of SL2(Z) for a positive integer N ,
Helling showed in [3] that the group Γ0(N)∗ generated by {Γ0(N),

(
0 −1
N 0

)
}

has the genus zero exactly for N = 1 ∼ 21, 23 ∼ 27, 29, 31, 32, 35, 36,
39, 41, 47, 49, 50, 59, 71. Moreover, for all such N but 49 and 50, Γ0(N)∗

has a fundamental Thompson series T ∗
N corresponding to itself ([2] Table 2).

Throughout this paper, we denote α to be a Heegner point, that is, α is a root
in H of an integral equation az2 + bz + c = 0 with b2 − 4ac < 0, (a, b, c) = 1
and a > 0, and K to be an imaginary quadratic field Q(α). Chen and Yui
showed in [1] Theorem 3.7.5(2) by using the Shimura reciprocity law that when
(a, N) = 1 for a prime number N , T ∗

N (α) generates a ring class field over K

of an imaginary quadratic order O′
of discriminant f2dK where f = mN and

b2 − 4ac = m2dK < 0.
In this paper, over an imaginary quadratic field K we study the class fields

generated by the singular values of automorphic functions which give rise to
Shimura’s canonical models of Γ0(N)\H∗ or Γ0(N)∗\H∗ at imaginary quadratic
arguments in the complex upper half plane H (Theorem 2.4). Here, N is any
positive integer and H∗ = H ∪ P1(Q), and our result is independent of the
genus of curve under consideration. As a corollary (Corollary 2.5), we can
extend Chen-Yui’s result on a ring class field K(T ∗

N (α)) to the case where
(a, b,N) ̸= N or ( a

N , N) ̸= 1 for a positive integer N > 1 by using the theory
of complex multiplication, whose proof is different from their argument.

Throughout the article we adopt the following notations:
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• Γ0(N) = {
(

a b
c d

)
∈ SL2(Z)| c ≡ 0 mod N}

• Γ0(N)∗ =
⟨
{Γ0(N),

(
0 −1
N 0

)
}
⟩

• Zp the ring of p-adic integers
• Qp the field of p-adic numbers
• H the complex upper half plane
• ζN = e2πi/N

• i =
√
−1

• T ∗
N a fundamental Thompson series (that is, a normalized Hauptmod-

ule) for a genus zero group Γ0(N)∗

• R× the group of units of a ring R

2. Class fields by Shimura’s canonical models

Let Γ be a Fuchsian group of the first kind. Then X(Γ) = Γ\H∗ is a compact
Riemann surface. Hence there exists a projective nonsingular algebraic curve
VΓ, defined over C, biregularly isomorphic to Γ\H∗. We specify a Γ-invariant
holomorphic map φΓ of H∗ to VΓ which gives a biregular isomorphism of Γ\H∗

to VΓ. In that situation, we call (VΓ, φΓ) a model of Γ\H∗. For instance, if
the genus of Γ\H∗ is zero, then its function field K(X(Γ)) is equal to C(J ′) for
some J ′ ∈ K(X(Γ)) and hence the pair (P1(C), J ′) gives a model of Γ\H∗ ([4]
Lemma 14).

Let GA be the adelization of an algebraic group G = GL2 defined over Q.
Put

Gp = GL2(Qp) (p : a rational prime),

G∞ = GL2(R),

G∞+ = {x ∈ G∞|det(x) > 0},
GQ+ = {x ∈ GL2(Q)|det(x) > 0},

U =
∏
p

GL2(Zp) × G∞+,

GA+ = UGQ+ .

We define the topology of GA by taking U to be an open subgroup of GA. Let
K be an imaginary quadratic field as described in the introduction and ξα be
an embedding of K into M2(Q). We call ξα normalized if it is defined by
a ( α

1 ) = ξα(a) ( α
1 ) for a ∈ K where α is the fixed point of ξα(K×) (⊂ GQ+)

in H. Observe that the embedding ξα defines a continuous homomorphism
of K×

A into GA+, which we denote again by ξα. Indeed, ξα = (ξα,p) is defined
by xp ( α

1 ) = ξα,p(xp) ( α
1 ) for xp ∈ K ⊗Q Qp for all prime p. Here GA+ is the

group G0G∞+ with G0 the non-archimedean part of GA and K×
A is the idele

group of K. Let Z be the set of open subgroups S of GA+ containing Q×G∞+

such that S/Q×G∞+ is compact. For S ∈ Z, we see that det(S) is open in Q×
A .

Therefore the subgroup Q× det(S) of Q×
A corresponds to a finite abelian

extension of Q, which we write kS . Put ΓS = S ∩ GQ+ for S ∈ Z. As is
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well known ([6] Proposition 6.27), ΓS/Q× is a Fuchsian group of the first kind
commensurable with PSL2(Z). Let

U0
p = {

(
a b
c d

)
∈ GL2(Zp)| c ≡ 0 mod NZp},

U0 = {x = (xp) ∈ U | xp ∈ U0
p for all finite p},

U0
∗ = U0 ∪ U0Φ(N),

Φ(N) = (xp) ∈ GA+ with xp =
(

0 −1
N 0

)
.

Then we have

Lemma 2.1. (i) Q×U0
∗ , Q×U0 ∈ Z,

(ii) kS = Q for S ∈ {Q×U0
∗ , Q×U0},

(iii) ΓS = Q×Γ0(N)∗ (respectively, Q×Γ0(N)) if S = Q×U0
∗ (respectively,

Q×U0).

Proof. It is well known for S = Q×U0. Since Q×U0
∗ = Q×U0∪Q×U0Φ(N) and

Q×U0 is an open subgroup in GA+, Q×U0
∗ is also an open subgroup in GA+.

Observing the fact that Q×U0/Q×G∞+ is compact, we obtain Q×U0
∗ ∈ Z.

As for (ii), we know that Q corresponds to the norm group Q×Q×∞
A with

Q×∞
A = R× ∏

p Z×
p and det

(
U0
∗
)

= Ndet(U0). But det(U0) = Q×∞
A , and

hence by the class field theory kS = Q. Indeed, det(U0) is contained in Q×∞
A .

Conversely, for any element (αp) ∈ Q×
A
∞

, take yp =
(

1 0
0 αp

)
; then (yp) ∈ U0

and det(yp) = (det yp) = (αp). Lastly, we readily get that ΓS = Q×U0
∗ ∩GQ+ =

Q×(
U0
∗ ∩ GQ+

)
= Q×Γ0(N)∗. ¤

For two complex numbers ω1 and ω2 such that ω1/ω2 ∈ H, we have a lattice
L = Zω1 + Zω2 in C. We then define a Fricke function

fa(z) =
g2(ω1, ω2)g3(ω1, ω2)

∆(ω1, ω2)
p(a ( ω1

ω2 ) ; ω1, ω2) (a ∈ Q2 \ Z2),

where

p(u;ω1, ω2) = u−2 +
∑

w∈L\0

[(u − w)−2 − w−2],

g2(ω1, ω2) = 60
∑

w∈L\0

w−4,

g3(ω1, ω2) = 140
∑

w∈L\0

w−6 and

∆(ω1, ω2) = g2(ω1, ω2)3 − 27g3(ω1, ω2)2.

Now let us put, for a positive integer N ,

FN = Q(j, fa| a ∈ N−1Z2, /∈ Z2) and F =
∞∪

N=1

FN ,

where j is the elliptic modular function. Then F is a Galois extension of F1

and CF is the field of modular functions of all levels.
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Proposition 2.2. For any u ∈ U , one can define an element τ(u) of Gal(F/F1)
by f

τ(u)
a = fau for all a ∈ (Q\Z)2. Moreover, τ(u) has the following properties:

(1) The sequence 1 → {±1} · G∞+ → U → Gal(F/F1) → 1 is exact,
(2) τ(u) = [det(u)−1, Q] on Qab,
(3) hτ(γ) = h ◦ γ for all h ∈ F and γ ∈ SL2(Z).

Proof. See [6, Proposition 6.21]. ¤

Here, [ , Q] is the reciprocity map and Qab is the maximal abelian extension
of Q.

We shall now define a homomorphism τ : GA+ −→ Aut(F) as follows. Since
GA+ = UGQ+ for β ∈ GQ+ , we define τ(β) by

hτ(β) = h ◦ β for all h ∈ F.

And, for x = uβ ∈ GA+ with u ∈ U and β ∈ GQ+ we put

τ(x) = τ(u)τ(β)

so that jτ(x) = j ◦ β and f
τ(x)
a = fau ◦ β. Indeed, the map τ is defined inde-

pendently of the choice of u and β by virtue of Proposition 2.2.
Next, for S = Q×U0

∗ or Q×U0 we can find a model (VΓS , φΓS
) of the curve

ΓS\H∗, which is characterized by the following properties:

(i) VS is defined over kS = Q (Lemma 2.1),
(ii) FS = {f ◦ φΓS

| f ∈ Q(VΓS
)},

where FS = {h ∈ F| hτ(x) = h for all x ∈ S} and Q(VΓS ) denotes the field of
functions on VΓS

rational over Q.

Example 2.3. Let T ∗
N be a fundamental Thompson series for a genus zero

group Γ0(N)∗ and S = Q×U0
∗ . Then FS = Q(T ∗

N ) because C is linearly disjoint
with FS over kS(= Q).

Theorem 2.4. Let α be a root in H of a primitive integral equation az2 +
bz + c = 0 with a > 0 such that b2 − 4ac = m2dK(< 0). Put K = Q(α)
and O(= Z[aα]) be an order in K of discriminant m2dK , where dK is the
discriminant of K.

(1) If N ≥ 1, S = Q×U0 and (VΓS
, φΓS

) is Shimura’s canonical model as
in the above, then φΓS

(α) generates the ring class field of an order O′

of discriminant f2dK where the conductor f of O′ is mN/(a,N).
(2) Assume that (a, b,N) ̸= N or ( a

N , N) ̸= 1 for N ≥ 2. If S = Q×U0
∗

and (VΓS
, φΓS

) is a model, then φΓS
(α) generates the ring class field

of an order O′ of discriminant f2dK where its conductor f equals
mN/(a,N).
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Proof. Let L be a lattice = ZNα + Z. Then O′ = Z + mN
(a,N)OK is an order of

L in K ([5] Ch.8). Let us consider the commutative diagram

Q2 ια−−−−→ K

ξα(µ)

y yµ

Q2 ια−−−−→ K

where ια(x, y) = xα + y and ια((x, y)ξα(µ)) = µια(x, y).
We may consider the mapping ια (respectively, ξα : K× → GL2(Q)) as

an isomorphism of affine varieties (respectively, a homomorphism of algebraic
groups) over Q. Thus, taking the QA-valued points, we have the following
commutative diagram

Q2
A

ια−−−−→ KA

ξα(s)

y ys

Q2
A

ια−−−−→ KA

for any idele s ∈ K×
A .

Let s = s∞s0 ∈ K×
A with infinite part s∞ and finite part s0 = (sp)p of s.

We then have the following statements:

ξα(s) ∈ U if and only if ξα,p(sp) ∈ GL2(Zp) for all finite p.

if and only if ξα(s0) ∈
∏
p

GL2(Zp).

if and only if ξα(s0) induces an automorphism of (
∏
p

Zp)2.

if and only if the multiplication by s0 induces an

automorphism of (Zα + Z) ⊗Z Ẑ

(because ια[(
∏
p

Zp)2] = (Zα + Z) ⊗Z Ẑ).

if and only if s0 ∈ (O1 ⊗Z Ẑ)×

where O1 is the order of Zα + Z in K.

Similarly, when ξα(s) ∈ U , we have that

ξα(s) ∈ U0 if and only if ξα(s0) induces an automorphism of

(N
∏
p

Zp) ⊕
∏
p

Zp.

if and only if the multiplication by s0 induces an

automorphism of L ⊗Z Ẑ.

if and only if s0 ∈ (O′ ⊗Z Ẑ)×.
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Then the assertion (1) follows from this, Lemma 2.1 and [6, Proposition 6.33]
that K · kS((φΓS

(α)) = K(φΓS
(α)) is the ring class field of O′.

In order to verify (2), we have only to show that ξα(K×
A ) ∩ U0Φ(N) is an

empty set under our assumptions. For xp ∈ K×
p , let

ξα,p(xp) =
(

ap bp

cp dp

)
with ap, bp, cp, dp ∈ Qp.

Then (
ap bp

cp dp

)
( α

1 ) = xp ( α
1 )

implies

ξα,p(xp) =
(

dp− b
a cp

−c
a cp

cp dp

)
.

Now suppose that ξα((xp)) = (ξα,p(xp))p ∈ U0Φ(N) for some (xp)p ∈ K×
A . For

each finite prime p, we can write(
dp− b

a cp
−c
a cp

cp dp

)
=

(
Nβp −αp

Nwp −γp

)
with some

(
αp βp
γp wp

)
∈ GL2(Zp) satisfying γp ≡ 0 mod NZp.

Then αpwp−γpβp ∈ Z×
p says that αp, wp ∈ Z×

p for all prime p|N . Notice that
cp = Nwp and dp = −γp ∈ Zp for all prime p|N . Since c

acp = c
aNwp = αp ∈ Z×

p

for all prime p|N , (a,N) = N. Moreover, b
awp ∈ Zp and hence (b,N) = N

because dp − b
acp = −γp − b

aNwp = Nβp and N |γP for all prime p|N . If
( a

N , N) ̸= 1, then we can take a prime factor p of ( a
N , N). Our factor p divides

c because c
aNwp = αp ∈ Z×

p and c
aN ∈ Z×

p . Therefore, p divides (a, b, c), which
is a contradiction. ¤

Corollary 2.5. Notations and assumptions being the same as in Theorem 2.4,
we further suppose that (a, b,N) ̸= N or ( a

N , N) ̸= 1 for N ≥ 2. Then T ∗
N (α)

generates the ring class field of an order O′ of discriminant f2dK whose con-
ductor f is mN/(a,N).

Proof. It is immediate from Lemma 2.1 and Theorem 2.4(2). ¤

Note that this corollary can also be proved by Chen-Yui’s method.
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