• Title/Summary/Keyword: cis element

Search Result 75, Processing Time 0.03 seconds

Light Regulated Plant Gene Expression (빛에 의한 식물 유전자의 발현)

  • 한태룡
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.63-79
    • /
    • 1987
  • Light regulates a variety of genes in higher plants. The expression of light-induced plant genes is regulated at the level of transcription via red- light photomorphogenic receptor, phytochrome, as well as unknown blue light photoreceptor(s). Ribulose-5-phosphate carboxylase/oxygenase (Rubisco) small subunit (SSB) and light harvesting chlorophyll a/b (Cab) protein are those of the best understood genes regulated by light. 5'-upstream flanking sequence (- -400) of Rubisco SSB and Cab genes sis known as a light responsive, enhance-like element. It responses to red and blue light in transgenic plant system as a tissue specific manner. Phytochrome gene is also regulated by light. In contrast to most of the light regulated plant genes, it is negatively controlled by red light. Search for the cis- and trans-acting factors responsible for the light signal is in progress to understant photomorphogenesis and development in higher plants.

  • PDF

Asymmetric Intramolecular Diels-Alder Cycloadditions of 2-Pyrone-3-Carboxylates and Synthesis of Vitamin $D_3$ A Ring Phosphine Oxide

  • 조천규;Gary H. Posner
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.957-961
    • /
    • 1998
  • Intramolecular Diels-Alder cycloadditions of 2-pyrone-3-carboxylates with trans-vinyl silaketal groups tethered via a chiral, non-racemic 1,3-butanediol auxiliary proceeded in unexpected stepwise cycloadditions through ionic intermediates to provide cis-disubstituted bicylolactones. The ratio of two isomers, exo and endo, was 5 to 1, and each isomer was found to be diastereomerically pure (>99% de). Their relative and absolute stereochemistries were determined by $^1H$ NMR spectroscopy and confirmed by X-ray crystallography of minor, endo-adduct 9. The major exo-adduct was successfully transformed to (-)-2-butyl substituted A-ring phophine oxide 16, a key element for the synthesis of 2-butyl vitamin D3.

Functional annotation of lung cancer-associated genetic variants by cell type-specific epigenome and long-range chromatin interactome

  • Lee, Andrew J.;Jung, Inkyung
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.3.1-3.12
    • /
    • 2021
  • Functional interpretation of noncoding genetic variants associated with complex human diseases and traits remains a challenge. In an effort to enhance our understanding of common germline variants associated with lung cancer, we categorize regulatory elements based on eight major cell types of human lung tissue. Our results show that 21.68% of lung cancer-associated risk variants are linked to noncoding regulatory elements, nearly half of which are cell type-specific. Integrative analysis of high-resolution long-range chromatin interactome maps and single-cell RNA-sequencing data of lung tumors uncovers number of putative target genes of these variants and functionally relevant cell types, which display a potential biological link to cancer susceptibility. The present study greatly expands the scope of functional annotation of lung cancer-associated genetic risk factors and dictates probable cell types involved in lung carcinogenesis.

Identification of cis-Regulatory Region Controlling Semaphorin-1a Expression in the Drosophila Embryonic Nervous System

  • Hong, Young Gi;Kang, Bongsu;Lee, Seongsoo;Lee, Youngseok;Ju, Bong-Gun;Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.228-235
    • /
    • 2020
  • The Drosophila transmembrane semaphorin Sema-1a mediates forward and reverse signaling that plays an essential role in motor and central nervous system (CNS) axon pathfinding during embryonic neural development. Previous immunohistochemical analysis revealed that Sema-1a is expressed on most commissural and longitudinal axons in the CNS and five motor nerve branches in the peripheral nervous system (PNS). However, Sema-1a-mediated axon guidance function contributes significantly to both intersegmental nerve b (ISNb) and segmental nerve a (SNa), and slightly to ISNd and SNc, but not to ISN motor axon pathfinding. Here, we uncover three cis-regulatory elements (CREs), R34A03, R32H10, and R33F06, that robustly drove reporter expression in a large subset of neurons in the CNS. In the transgenic lines R34A03 and R32H10 reporter expression was consistently observed on both ISNb and SNa nerve branches, whereas in the line R33F06 reporter expression was irregularly detected on ISNb or SNa nerve branches in small subsets of abdominal hemisegments. Through complementation test with a Sema-1a loss-of-function allele, we found that neuronal expression of Sema-1a driven by each of R34A03 and R32H10 restores robustly the CNS and PNS motor axon guidance defects observed in Sema-1a homozygous mutants. However, when wild-type Sema-1a is expressed by R33F06 in Sema-1a mutants, the Sema-1a PNS axon guidance phenotypes are partially rescued while the Sema-1a CNS axon guidance defects are completely rescued. These results suggest that in a redundant manner, the CREs, R34A03, R32H10, and R33F06 govern the Sema-1a expression required for the axon guidance function of Sema-1a during embryonic neural development.

Production of tissue-type plasminogen activator from immobilized CHO cells introduced hypoxia response element

  • Bae, Geun-Won;Kim, Hong-Jin;Kim, Gi-Tae;Kim, Ik-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.257-260
    • /
    • 2002
  • Dissolved oxygen level of cell culture media has a critical effect on cellular metabolism, which governs specific productivity of recombinant proteins and mammalian cell growth However, in the cores of cell aggregates or cell-immobilized beads, oxygen level frequently goes below a critical level. Mammalian cells have a number of genes induced in the lower level of oxygen, and the genes contain a common cis-acting element (-RCGTG-), hypoxia response element (HRE). By binding of hypoxia inducible factor-l (HIF-I) to the HRE, promoters of hypoxia inducible genes are activated, which is a survival mechanism. In this work, to develop a CHO cell capable of producing recombinant proteins in immobilization and high density cell culture efficiently, mammalian expression vectors containing human tissue-type plasminogen activator (t-PA) gene controlled by HRE were constructed and stably transfected into the CHO cells. In $Ba^{2+}$ -alginate immobilization culture, CHO/pCl/dhfr/2HRE-t-PA cells produced 2 folds higher recombinant t-PA activity than CHO/pCl/dhfrlt-PA cells without $CoCl_2$ treatment. Furthermore, in repeated fed batch culture, productivity of t-PA in immobilized CHO/pCI/dhfr/2HRE-t-PA cells was 121 ng/ml/day, total production of 0.968 mg/day at 11 days culture while CHO/pCIIdhfrlt-PA cells was 22.8 ng/ml/day. All these results indicate that HRE is very useful for the enhancement of protein productivity in mammalian cell cultures.

  • PDF

Expression Patterns and Isolation of Genomic DNA of a Metallothionein-like Gene from Citrus (Citrus unshiu Marc. cv. Miyagawa) (감귤에서 분리한 Metallothionein 유전자의 발현분석 및 게놈 DNA)

  • 김인중
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.231-237
    • /
    • 2001
  • A cDNA clone encoding metallothionein-like protein (CitMT45), which was reported by Moriguchi et al. (1998), was isolated from Citrus fruits cDNA library through differential screening. Our cDNA clone has longer 5'untranslated region, compared to it isolated by Moriguchi et al. (1998). RNA blot analysis showed that the mRNA was abundant in fleshes than peels, leaves, and flowers, as a single transcript. However, regardless of tissue types, the blots showed the similar expression patterns in the process of development with some different profile. These results suggest that CitMT45 may play important roles in the development and/or senescence of various tissues of Citrus. A genomic clone corresponding to CitMT45 was isolated and found to have three exons and two introns. A primer extension analysis suggested that the transcription of CitMT45 gene was started at three start sites with different degrees. The 5'-flanking region was shown to contain a putative metal regulatory element (MRE) and low- temperature responsive element which suggests the possibility of metal-and cold-regulated transcription, respectively.

  • PDF

Immunological Detection of Garlic Latent Virus (마늘 잠복 바이러스의 면역학적 진단)

  • Choi, Jin-Nam;Song, Jong-Tae;Song, Sang-Ik;Ahn, Ji-Hoon;Choi, Yang-Do;Lee, Jong-Seob
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.49-54
    • /
    • 1995
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses, we have isolated cDNA clones for garlic viruses. The partial nucleotide sequences of 24 cDNA clones were determined and those of five clones containing poly(A) tail were compared with sequences of other plant viruses. One of these clones, V9, has a primary structure similar to the carlavirus group, suggesting that the clone V9 derived from a part of garlic latent virus (GLV). Northern blot analysis with the clone V9 as a probe demonstrated that GLV genome is 8.5 knt long and has a poly(A) tail. The clone V9 encodes coat protein (CP) of 33 kDa and nucleic acid binding protein of 10 kDa in different reading frame. The hexanucleotide motif, 5'-ACCUAA, which is conserved in the 3' noncoding region arid was proposed to be a cis-acting element involved in the production of negative strand genomic RNA was noticed. Complementary sequence to the hexanucleotide motif, 5'-TTAGGT, is also found in the positive strand of V9 RNA. The putative CP gene was cloned into the pRSET-A expression vector and expressed in E. coli BL21. The expressed recombinant V9CP protein was purified by $Ni^{2+}$ NTA affinity chromatography. The anti-V9CP antibody recognizes 34 kDa polypeptide which could be CP of GLV in infected garlic leaf extract. Immunoblot and Northern blot analysis of various cultivars shows wide occurrence of GLV in Korean garlic plants.

  • PDF

Caffeic Acid Phenethyl Ester Induces the Expression of NAG-1 via Activating Transcription Factor 3 (ATF3를 통한 caffeic acid phenethyl ester에 의한 NAG-1 유전자의 발현 증가)

  • Park, Min-Hee;Chung, Chungwook;Lee, Seong Ho;Baek, Seung Joon;Kim, Jong Sik
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a transforming growth factor beta (TGF-${\beta}$) superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. In the present study, we investigated if caffeic acid phenethyl ester (CAPE) derived from propolis could induce the expression of anti-tumorigenic gene NAG-1. Our results indicate that CAPE significantly induced NAG-1 expression in a time- and concentration-dependent manner in HCT116 cells. We also found that CAPE induced NAG-1 expression in a concentration-dependent manner in another human colorectal cancer cell line, LOVO. In addition, CAPE triggered apoptosis, which was detected with Western blot analysis using poly-(ADP-ribose) polymerase antibody. NAG-1 induction by CAPE was not dependent on transcription factor p53, which was confirmed with Western blot analysis using p53 null HCT116 cells. The luciferase assay results indicated that the new cis-elements candidates were located between -474 and -1,086 of the NAG-1 gene promoter. CAPE dramatically induced activating transcription factor 3 (ATF3) expression, but not cAMP response element-binding protein (CREB), which shares the same binding sites with ATF3. The co-transfection experiment with pCG-ATF3 and pCREB showed that only ATF3 was associated with NAG-1 up-regulation by CAPE, whereas CREB had no effect. In conclusion, the results suggest that CAPE could induce the expression of anti-tumorigenic gene NAG-1 mainly through ATF3.

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin

  • Soriano, Francesc X.;Baxter, Paul;Murray, Lyndsay M.;Sporn, Michael B.;Gillingwater, Thomas H.;Hardingham, Giles E.
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.279-282
    • /
    • 2009
  • "Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.

miR-7b Promoter Contains Negative Gene Elements (네거티브 유전자 조절인자를 포함하는 마이크로RNA, miR-7b의 프로모터)

  • Choi, Ji-Woong;Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1784-1788
    • /
    • 2011
  • The typical miRNA and its nearby host gene are co-expressed by sharing the same promoter. We assumed that miR-7b and its host gene FICT might use an identical promoter for their brain specific gene expression. Sequence comparison of the genomic DNA of mouse miR-7b, human miR-7-3 and their host genes by using the bioinformatic tools revealed high sequence homology and several putative transcription factor-binding sites on the promoter region. In order to probe the hypothesis we used a luciferase vector system into which we cloned the 5' upstream conserved region of miR-7b and FICT. The putative promoter region showed decreased luciferase activity, suggesting that the 5' upstream of miR-7b and FICT contain a negative regulator for gene expression.