Browse > Article
http://dx.doi.org/10.1007/s10059-009-0050-y

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin  

Soriano, Francesc X. (Centre for Integrative Physiology, University of Edinburgh)
Baxter, Paul (Centre for Integrative Physiology, University of Edinburgh)
Murray, Lyndsay M. (Centre for Integrative Physiology, University of Edinburgh)
Sporn, Michael B. (Dartmouth Medical School)
Gillingwater, Thomas H. (Centre for Integrative Physiology, University of Edinburgh)
Hardingham, Giles E. (Centre for Integrative Physiology, University of Edinburgh)
Abstract
"Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.
Keywords
antioxidant response element; AP-1; Nrf2; oxidative stress; peroxiredoxin; sulfiredoxin;
Citations & Related Records

Times Cited By Web Of Science : 20  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Boulos, S., Meloni, B.P., Arthur, P.G., Bojarski, C., and Knuckey, N.W. (2007). Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J. Neurosci. Res. 85, 3089-3097   DOI   PUBMED   ScienceOn
2 Findlay, V.J., Townsend, D.M., Morris, T.E., Fraser, J.P., He, L., and Tew, K.D. (2006). A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res. 66, 6800-6806   DOI   PUBMED   ScienceOn
3 Giudice, A., and Montella, M. (2006). Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28,169-181   DOI   PUBMED   ScienceOn
4 Hattori, F., Murayama, N., Noshita, T., and Oikawa, S. (2003). Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J. Neurochem. 86, 860-868   DOI   PUBMED   ScienceOn
5 Jeong, W., Park, S.J., Chang, T.S., Lee, D.Y., and Rhee, S.G. (2006). Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J. Biol. Chem. 281,14400-14407   DOI   PUBMED   ScienceOn
6 Qu, D., Rashidian, J., Mount, M.P., Aleyasin, H., Parsanejad, M., Lira, A., Haque, E., Zhang, Y., Callaghan, S., Daigle, M., et al.(2007). Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 55, 37-52   DOI   PUBMED   ScienceOn
7 Soriano, F.X., Leveille, F., Papadia, S., Higgins, L.G., Varley, J., Baxter, P., Hayes, J.D., and Hardingham, G.E. (2008). Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H-1,2-dithiole-3-thione. J. Neurochem. 107, 533-543   DOI   PUBMED   ScienceOn
8 Shih, A.Y., Li, P., and Murphy, T.H. (2005). A small-moleculeinducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J. Neurosci. 25, 10321-10335   DOI   PUBMED   ScienceOn
9 Chang, T.S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., and Rhee, S.G. (2004). Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279, 50994-51001   DOI   PUBMED   ScienceOn
10 Rhee, S.G., Jeong, W., Chang, T.S., and Woo, H.A. (2007). Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int. 106, S3-8   DOI   PUBMED   ScienceOn
11 Yao, J., Taylor, M., Davey, F., Ren, Y., Aiton, J., Coote, P., Fang, F., Chen, J.X., Yan, S.D., and Gunn-Moore, F.J. (2007). Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates upregulation of peroxiredoxin II in the brains of Alzheimer's disease patients and a transgenic Alzheimer's disease mouse model. Mol. Cell. Neurosci. 35, 377-382   DOI   PUBMED   ScienceOn
12 Wei, Q., Jiang, H., Matthews, C.P., and Colburn, N.H. (2008). Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc. Natl. Acad. Sci. USA 105,19738-19743   DOI   PUBMED   ScienceOn
13 Brown, P.H., Alani, R., Preis, L.H., Szabo, E., and Birrer, M.J.(1993). Suppression of oncogene-induced transformation by a deletion mutant of c-jun. Oncogene 8, 877-886   PUBMED
14 Noh, Y.H., Baek, J.Y., Jeong, W., Rhee, S.G., and Chang, T.S.(2009). Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. doi:10.1074/jbc.M808981200   DOI   ScienceOn
15 Nioi, P., McMahon, M., Itoh, K., Yamamoto, M., and Hayes, J.D.(2003). Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem. J. 374, 337-348   DOI   PUBMED   ScienceOn
16 Glauser, D.A., Brun, T., Gauthier, B.R., and Schlegel, W. (2007). Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Mol. Biol. 8, 54   DOI   PUBMED   ScienceOn
17 Immenschuh, S., and Baumgart-Vogt, E. (2005). Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid. Redox Signal. 7, 768-777   DOI   PUBMED   ScienceOn
18 Liby, K.T., Yore, M.M., and Sporn, M.B. (2007). Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat. Rev. Cancer 7, 357-369   DOI   PUBMED   ScienceOn
19 Lee, J.M., Li, J., Johnson, D.A., Stein, T.D., Kraft, A.D., Calkins, M.J., Jakel, R.J., and Johnson, J.A. (2005). Nrf2, a multi-organ protector? FASEB J. 19, 1061-1066   DOI   PUBMED   ScienceOn
20 Wasserman, W.W., and Fahl, W.E. (1997). Comprehensive analysis of proteins which interact with the antioxidant responsive element: correlation of ARE-BP-1 with the chemoprotective induction response. Arch. Biochem. Biophys. 344, 387-396   DOI   PUBMED   ScienceOn
21 Kensler, T.W., Wakabayashi, N., and Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116   DOI   PUBMED   ScienceOn
22 Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., and Chumakov, P.M. (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596-600   DOI   PUBMED   ScienceOn
23 Jonsson, T.J., Johnson, L.C., and Lowther, W.T. (2008a). Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 451, 98-101   DOI   PUBMED   ScienceOn
24 Papadia, S., Soriano, F.X., Leveille, F., Martel, M.A., Dakin, K.A., Hansen, H.H., Kaindl, A., Sifringer, M., Fowler, J., Stefovska, V., et al. (2008). Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat. Neurosci. 11, 476-487   DOI   PUBMED   ScienceOn
25 Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984   DOI   PUBMED   ScienceOn
26 Yates, M.S., Tauchi, M., Katsuoka, F., Flanders, K.C., Liby, K.T., Honda, T., Gribble, G.W., Johnson, D.A., Johnson, J.A., Burton, N.C., et al. (2007). Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol. Cancer Ther. 6, 154-162   DOI   PUBMED   ScienceOn
27 Fang, J., Nakamura, T., Cho, D.H., Gu, Z., and Lipton, S.A. (2007). S-nitrosylation of peroxiredoxin 2 promotes oxidative stressinduced neuronal cell death in Parkinson's disease. Proc. Natl. Acad. Sci. USA 104,18742-18747   DOI   PUBMED   ScienceOn
28 Jonsson, T.J., Murray, M.S., Johnson, L.C., and Lowther, W.T.(2008b). Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J. Biol. Chem. 283, 23846-23851   DOI   PUBMED   ScienceOn
29 Zhang, D.D. (2006). Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769-789   DOI   PUBMED   ScienceOn
30 Sanchez-Font, M.F., Sebastia, J., Sanfeliu, C., Cristofol, R., Marfany, G., and Gonzalez-Duarte, R. (2003). Peroxiredoxin 2(PRDX2), an antioxidant enzyme, is under-expressed in Down syndrome fetal brains. Cell Mol. Life Sci. 60,1513-1523   DOI
31 Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543-1552   DOI   PUBMED   ScienceOn
32 Nguyen, T., Yang, C.S., and Pickett, C.B. (2004). The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic. Biol. Med. 37, 433-441   DOI   PUBMED   ScienceOn
33 Wood, Z.A., Schroder, E., Robin Harris, J., and Poole, L.B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40   DOI   ScienceOn
34 Rhee, S.G., Woo, H.A., Bae, S.H., and Park, S. (2009) Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid. Redox Signal. 11, 739-745. (in press)   DOI   ScienceOn
35 Singh, A., Ling, G., Suhasini, A.N., Zhang, P., Yamamoto, M., Navas-Acien, A., Cosgrove, G., Tuder, R.M., Kensler, T.W., Watson, W.H., et al. (2009). Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs. Free Radic. Biol. Med. 46, 376-386   DOI   PUBMED   ScienceOn
36 Bae, S.H., Woo, H.A., Sung, S.H., Lee, H.E., Lee, S.K., Kil, I.S., and Rhee, S.G. (2009). Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia. Antioxid. Redox Signal. [Epub ahead of print]   DOI   PUBMED   ScienceOn