Asymmetric Intramolecular Diels-Alder Cycloadditions of 2-Pyrone-3-Carboxylates and Synthesis of Vitamin D_{3} A Ring Phosphine Oxide

Cheon-Gyu Cho* and Gary H. Posnerr*
Department of Chemistry, Hanyang University, Seoul 133-791, Korea
${ }^{\dagger}$ Department of Chemistry, The Johns Hopkins University, Baltimore, MD, USA 21218
Received April 25, 1998

Abstract

Intramolecular Diels-Alder cycloadditions of 2-pyrone-3-carboxylates with trans-vinyl silaketal groups tethered via a chiral, non-racemic 1,3-butanediol auxiliary proceeded in unexpected stepwise cycloadditions through ionic intermediates to provide cis-disubstituted bicylolactones. The ratio of two isomers, exo and endo, was 5 to 1, and each isomer was found to be diastereomerically pure ($>99 \%$ de). Their relative and absolute stereochemistries were determined by 'H NMR spectroscopy and confirmed by X-ray crystallography of minor, endo-adduct 9. The major exo-adduct was successfully transfonmed to (-)-2-butyl substituted A-ring phophine oxide 16, a key element for the synthesis of 2-butyl vitamin D_{3}.

Introduction

As a part of the research program involving synthesis of new calcitriol analogs as anticarcinogenic reagents and for chemotherapy of osteoporosis, we were interested in 2-alkyl substituted vitamin D_{3} compounds. ${ }^{1}$ A simple expansion of our methodology which utilizes intermolecular Diels-Alder cycloadditions of 2-pyrones with silyl enol ethers was not applicable mainly because the reactivity of 2-pyrones is not sufficient to toletate any substituent groups on the silyl enol ether. ${ }^{2}$ High pressure can be used, but from which no asymmetry can be expected. ${ }^{\text {Ib }}$ For both enhancement of chemical reactivity and introduction of chirality, ${ }^{3}$ we connected 2-pyrone-3-carboxylates to dienophiles through chiral tether groups for the cycloadditions to occur intramolecularly. ${ }^{4}$ Among the systems studied, a vinyl silaketal linked via a chiral, non-racemic 1,3-diol gave the best results in both chemical yield and asymmetric induction. We herein report intramolecular cycloadditions of such systems, and propose an explanation for the high diasteroselectivity ($>99 \%$ de) we observed, as well as the subsequent transformations of the exo-cycloadduct 8 into (-)-2-butyl A ring phosphine oxide 16.

Results and Discussion

System 1 (Table 1) represents a pyrone carboxylate and allylic silane that were connected through a chiral thiazolidinethione. ${ }^{5}$ Both thermal ($120^{\circ} \mathrm{C}$ up to 7 days) and high pressure (140 kpsi up to 7 days) conditions failed to provide the corresponding cycloadducts. Low reactivity of the dienophile, allylic silane, could account for the failures. Cycloadditions of system 2 (Table 1), linked with vinyl silane through 1,2 -diol as a tether, also failed under the same conditions. The possible reasons for these failures, however, could be two-fold: 1) the reactivity of the vinyl silane might still be insufficient, and/or 2) the vinyl silane did not match the pyrone electronically. ${ }^{6}$ From our earlier study, we learned that the carbon 6 in 2 -pyrone-3-carboxylate carries the most positive partial charge. ${ }^{7}$ Thus the
carbons 6 and 3 in the pyrone would have to line-up to the α-carbon and to the β-carbon next to the silicon, respectively. This alignment would exert too severe distortions, particularly in the portion of the tether group, for a cycloaddition to occur.
The systems in Table 2 were prepared, and this time vinyl silaketals were used as dienophile partners to be consistent with the above electronic factors. ${ }^{8}$ The tether groups are chiral 1,2-propanediol for system 3 and chiral 2, 3-butanediol for system 4.
Attempted thermal cycloaddition reactions led only to the decomposition of the labile vinly silaketal group. When they were pressurized, systems $\mathbf{3}$ and $\mathbf{4}$ underwent the desired cycloadditions to provide a mixture of endo- 5 and

Table 1.

Condition	2
RT $\rightarrow \Delta$ (up to 7 days)	Result
14 kpsi (up to 70 days)	no reaction

Table 2.

exo-6, each of which consisted of two diastereomers, in 50% total yield. The 2,3-butanediol tethered system 4 gave the similar results," although it seemed to somewhat increase the rate of the reaction to reach 50% conversion through a buttressing effect. We then increased the length of the tether group to reduce the torsional strain that might exist in the transition state during the intramolecular cycloadditions. System 7 (Table 3) ${ }^{10}$ was thus prepared and subjected to the cycloaddition reactions. Thermal reaction conditions resulted in similar breakage of the vinyl silaketal group as was observed in systems 3 and 4. Upon being pressurized at 140 kpsi for 7 days in toluene, system 7 provided a mixture of the isomeric cycloadducts in 56% total yield. ${ }^{4}$ Although we were pleased with these first examples of the intramolecular cycloadditions of the 2 -pyrone-3-carboxylates, we decided to run the reactions in the presence of Lewis acids. After 4 days at $-30^{\circ} \mathrm{C}$ in toluene and ethyl ether, the system 7 underwent a cycloaddition in the presence of ZnBr_{2} to provide a mixture of exo-8 and endo-9 in 90% total yield with a ratio of $5: 1$. Other Lewis acids MgBr_{2} and $\mathrm{Et}_{2} \mathrm{AlCl}$ gave similar results. The stereochemical assignments of the two isomers were made mainly based on ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, which were further contirmed by single crystal X-ray crystallography of the minor product, endo-9.1"

Under the influence of Lewis acid, the cycloaddition proceeded in a stepwise fashion ${ }^{12}$ rather than concerted to give rise to cis-disubstituted cycloadducts. As outlined in Scheme 1, a Zwitterionic species was formed initially via 1,6 conjugate addition of the silyl enol ether to C 6 on the pyrone system. This intermediate survived long enough to allow a rotation of the siloxy group to relieve the tortional strain in the linker. Upon final cyclization, cis adducts were formed. The possible retro-Aldol mechanism was excluded as a possible cause for the formation of cis-adducts because the exo-trans adduct, prepared earlier, was stable under the same reaction conditions used here. Lewis acid promoted E Z isomerization of E-silyl enol ether was not observed under the reaction condition. The preferable formation of the cis-exo cycloadduct from the system 7 is believed to be due to the more stable endo transition state (secondary orbital interaction, endo TS led to exo-8 because of the bond rotation).

More impressive was that both isolated exo and endo adducts were diastereomerically pure ($>99 \%$), not a mixture, based on NMR spectroscopy and their optical rotations. Apparently, the chiral methyl group in the tether served a

Table 3.

Scheme 2
critical role in this high and almost complete chiral induction. In the formation of the exo-adduct, there are two possible transition states, TS-1 and TS-2, which differ in the direction of the approaching vinyl silaketal group with respect to the face of the pyrone (Scheme 2).

TS-1, where the methyl group is in the pseudo-equatorial position, would be at lower energy state than TS-2, where the methyl group is in the pseudo-axial position. This energy difference in the transition state could be large enough at $-30^{\circ} \mathrm{C}$, leading to the dominant formation of the single diastereomer whose absolute stereochemistry, assigned spectroscopically and by comparison with similar systems, ${ }^{11}$ is as drawn. The same argument can be applied to the exclusive formation of single diasteromeric endoadduct 9 whose absolute stereochemistry is confirmed by Xray crystallography to be as shown in Table 3.

Diastereomerically pure exo-(+)-8, the major adduct, was then carried through for the synthesis of optically active, 2 butyl substituted A-ring phosphine oxide 16 (Scheme 3). Upon silaketal ring openning with $5 \% \mathrm{HF}$ and subsequent protection of the resulting diols with TBDMS (t-butyldimethylsilyl) triflate, the O-silylated cycloadduct $\mathbf{1 0}$ was obtained. Lactone ring opening with excess lithium allyl-

oxide provided unexpected tetrasubstituted cyclohexene 13 , presumably via formation of mixed allyl methyl malonate 11, followed by concomitant deallyloxycarbonylation, ${ }^{13}$ resulting from the attack of allyloxide in either direction of the arrows, and double bond conjugation as depicted in Scheme 3. O-silylation and reduction of the conjugated enoate $\mathbf{1 3}$ provided allylic alcohol (+)-14, which was converted to Z dienoate 15 using our sulfinylated orthoester protocol. ${ }^{14}$ In this one-flask reaction, the enoate 13 underwent two-carbon homologation via a Claisen rearrangement followed by a spontaneous thermal sulfoxide elimination to give E and Z mixture of dienoate. The undesired E dienoate was photochemically isomerized to Z dienoate $\mathbf{1 5}$ that was subsequently transformed to optically active, A-ring phosphine oxide (-)-16 after a few more reactions involving reduction, chlorination, displacement, followed by oxdiation.

The phosphine oxide (-)-16 can be readily converted to 2β-butyl-1 $\beta, 25$-dihydroxyvitamin D_{3} through Lythgoe coupling reaction with CD ring. ${ }^{15}$ This highly diastereospecific intramolecular cycloaddition methodology was also successfully applied to construct a new calcitriol analog 2β -(3'-fluoropropyl)-1 $\beta, 25$-dihydroxyvitamin $\mathrm{D}_{3}{ }^{\text {1/4 }}$ Conclusively, 2-pyrone-3-carboxylates with β-substituted vinyl silaketal, connected through 1,3-butanediol linker, underwent smooth intramolecular Diels-Alder cycloadditions with high asymmetric induction. This strategy using chiral, nonracemic 1,3-butanediol as a tether could be further applied to intramolecular cycloadditions of not only pyrone systems, but also other dienes for efficient and high asymmetric control.

Experimental Section

Cycloadducts (+)-8 and (-)-9. To a flame dried 50 mL flask charged with $0.310 \mathrm{~g}(7.3 \mathrm{mmol})$ of the pyrone enol ether $7,3 \mathrm{~mL}$ of anhydrous ether and 6 mL of anhydrous toluene was added $0.160 \mathrm{~g}(7.3 \mathrm{mmol})$ of ZnBr_{2}. Upon addition, the reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and stirred for 4 days. The reaction mixture was then concentrated by rotary evaporator and directly purified by column chromatography ($97 / 3$ hexane/EtOAc) to afford 0.233 g of the exo-cycloadduct 8 in 75% yield along with 0.045 g (15% yield) of the crystalline endo-cycloadduct 9 . For $(+)-8:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59(\mathrm{dd}, J=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{dt}, J$ $=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.77(\mathrm{~m}, 2 \mathrm{H}), 1.88-$ $1.28(\mathrm{~m}, 8 \mathrm{H}), 1.34(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 1 \mathrm{H}), 1$. 03 (d, $J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.87(\mathrm{~m}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 168.5,167.0,130.8,129.3,76.4$, $75.4,70.3,62.6,59.8,49.2,37.7,30.1,29.3,22.4,20.6$, $17.6,17.4,17.3,17.2,13.8,12.7,10.5 ;$ FT-IR $\left(\mathrm{CHCl}_{3}\right)$ $2945,2868,1769,1724,1464,1364,1291 \mathrm{~cm}^{-1}$; HRMS, $\mathrm{m} / \mathrm{e}\left(\mathrm{M}^{+}-i \mathrm{Pr}\right)$ calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si} 381.1733$, found 381.1740 ; $[\alpha]_{\mathrm{D}}{ }^{24}+17.5\left(\mathrm{c}=22 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. For $(-)-9:{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 6.83(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=8.0,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.60-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.50-1.20(\mathrm{~m}, 9 \mathrm{H}), 1.40(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS, $\mathrm{m} / \mathrm{e}\left(\mathrm{M}^{+}-i \mathrm{Pr}\right)$ calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{Si} 381.1733$, found 381.1739; $[\alpha]_{D}{ }^{24}-1.8\left(c=35 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Single crystal X-ray
analysis showed the absolute stereochemistry of (-)-9 to be as shown in Table 3.

Bis-Silyl Ether 12. To a 100 mL round bottomed flask charged with $0.270 \mathrm{~g}(6.4 \mathrm{mmol})$ of $(+)-8$ was added 27 mL of $5 \% \mathrm{HF}$ in acetonitrile at RT. After 20 min , the reaction mixture was neutralized with aq. NaHCO_{3} and extracted with $\mathrm{CHCl}_{3}(2 \times 50 \mathrm{~mL}$). The combined solution was dried over MgSO_{4}, concentrated by rotary evaporator and dissolved in 10 mL of DMF. To this solution were added $0.61 \mathrm{~mL}(2.6 \mathrm{mmol})$ of t-butyldimethylsilyl trifluoromethane sulfonate (TBDMS-OTf) and $0.30 \mathrm{~mL}(0.26$ mmol) of 2,6 -lutidine at RT. After 2 hours at RT, the reaction mixture was dumped into 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether ($2 \times 25 \mathrm{~mL}$). The combined ethereal solution was dried over MgSO_{4}, concentrated and purified by column chromatography ($90 / 10$ hexane/ether) to give 0.270 g of the bis-silyl ether 10 as a light green oil in 79% yield from the exo-cycloadduct 8. 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.69$ ($\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.55(\mathrm{dd}, J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-$ $5.12(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dt}, J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{bs}, 1 \mathrm{H})$, 3.72 (ddd, $J=7.2,7.2,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.01•1.93 (m, 1H), 1.82$1.73(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.36$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 4 \mathrm{H}$, overlapped), $0.92(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05$ $(\mathrm{s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 167.0,166.7$, $130.4,130.1,75.9,73.6,71.1,63.0,59.6,49.4,39.0,30.0$, $29.5,25.9,25.5,22.6,20.1,18.2,17.8,13.9,-4.3,-5.2$, -5.4, - 5.4; FT-IR $\left(\mathrm{CHCl}_{3}\right) 2957,2931,2858,1760,1733$, $1472,1464,1362,1288,1258,1094 \mathrm{~cm}^{-1}$; HRMS, m/e ($\mathrm{M}^{+}-t \mathrm{Bu}$) calc. for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{O}_{6} \mathrm{Si}_{2} 483.2598$, found 483.2594 .

Enoate 13. To a 50 mL flame dried round bottomed flask charged with 37.0 mg (mmol) of the bis-silyl ether $\mathbf{1 0}$ was cannulated at $0^{\circ} \mathrm{C} 2 \mathrm{~mL}$ of lithium allylic oxide in allylic alcohol (0.7 M), prepared from 4 mL of $\mathrm{nBuLi}(1.4$ M in hexane) and 4 mL of freshly distilled allylic alcohol at $0^{\circ} \mathrm{C}$. After 30 min , at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was warmed to RT and stired for 10 hours. Upon quenching with sat $\mathrm{NH}_{4} \mathrm{Cl}$, the product mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, dried over MgSO_{4}, concentrated by rotary evaporator and chromatographed ($10 \% \mathrm{EtOAc} /$ hexane) to give 12.3 mg of the enoate 13 in 38% yield. 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{dd}, J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (ddd, $J=10.8,6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.65 (ddd, $J=8.4,6.0,2.0,2 \mathrm{H}$), 2.49 (dt, $J=19.2,5.6 \mathrm{~Hz}$, 1 H), 2.09 (ddd, $J=19.6,10.4,2.8,1 \mathrm{H}), 1.95-1.83$ (m, 2H), 1.78-1.70 (m, 1 H$), 1.60-1.23(\mathrm{~m}, 7 \mathrm{H}$, overlapped), $1.28(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}$, overlapped), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.85$ $(\mathrm{s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.0,139.1,131.4,68.7,67.7,65.0,59.5,47.2$, $39.1,31.2,30.4,25.83,25.80,23.1,22.6,20.1,18.2,17.9$, $14.0,4.5,-4.9,-5.4,-5.5$; FT-IR $\left(\mathrm{CHCl}_{3}\right) 3613,3020$, $2957,2930,2858,1704,1472,1253 \mathrm{~cm}^{-1} ;$ HRMS, m/e $\left(\mathrm{M}^{+}-t \mathrm{Bu}\right)$ calc. for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{Si}_{2} 457.2806$, found 457.2809 .

O-Silyl Allylic Alcohol (+)-14. To flask charged with 15.8 mg (0.03 mmol) of the enoate 13 in 0.3 mL of DMF were added 0.014 mL of TBDMS-OTf ($0.06 \mathrm{mmol}, 2$ eq.) and 0.006 mL of 2,6 -lutidine at RT. After 4 hours at RT, the product mixture was diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, concentrated by rotary evaporator and chromatographed ($10 \% \mathrm{EtOAc} / \mathrm{hexane}$) to give 30.0 mg of crude O-silylated product contaminated with some high
running material. To this crude product in 1.5 mL of anhydrous toluene was added $0.4 \mathrm{~mL}(0.4 \mathrm{mmol})$ of DIBAL-H at $-78{ }^{\circ} \mathrm{C}$. After 40 min . at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was treated with 1 mL of sodium potassium tartrate (2 M in $\mathrm{H}_{2} \mathrm{O}$ and EtOH), and the resulting solution was warmed to RT. After 10 min , the organic layer was decanted, and the aqueous layer was further extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solution was dried over MgSO_{4}, filtered through a plug of Celite, concentrated by rotary evaporator and chromatographed (10% EtOAc/hexane) to give 7.0 mg of the allylic alcohol $(+)-14$ and 3.5 mg of the monoprotected chiral diol in 52% and 54% overall yield, respectively. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.67-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.21$ (ddd, $J=9.6,5.6$, $4.0,1 \mathrm{H}), 4.14(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.14(\mathrm{dt}, J=17.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.71$ ($\mathrm{m}, 1 \mathrm{H}$), 1.43-1.22 (m, 7 H$), 0.91(\mathrm{t}, 3 \mathrm{H}$, overlapped), 0.90 ($\mathrm{s}, 9 \mathrm{H}$), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.123(\mathrm{~s}, 3 \mathrm{H}), 0.119(\mathrm{~s}, 3 \mathrm{H}), 0.04$ (s, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 137.0,125.2,70.4,66.1,65.4,47$. $5,31.2,30.1,25.8,23.1,18.02,17.93,14.05,-4.2,-4.6$, -4.7, -4.8; FT-IR $\left(\mathrm{CHCl}_{3}\right) 3606,3015,2957,2930,2858$, $1472,1463,1256 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{23} \mathrm{C}+32\left(\mathrm{c}=0.016, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ HRMS, m/e $\left(\mathrm{M}^{+}-t \mathrm{Bu}\right)$ calc. for $\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}_{2} 371.2438$, found 371.2443.

Z-Dienoate 15. To a 5 mL hydrolysis tube were charged $26 \mathrm{mg}(0.06 \mathrm{mmol})$ of the allylic alcohol (+)-14, 100 mg of 1-(phenylsufinyl)-2,2,2-triethoxylethane, 2 mg of $2,4,6$-trimethylbenzoic acid and 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The tube was then sealed and heated at $150^{\circ} \mathrm{C}$ for 12 hr . The product mixture was cooled, filtered through a plug of silica gel with ether, concentrated by rotary evaporator and chromatographed (100% hexane $\rightarrow 5 \%$ EtOAc/hexane) to give 30 mg of product as a mixture of E and Z-dienoate. A 5 mL borosilicate test tube was charged with the product mixture, 2 mg ($0.01 \mathrm{mmol}, 0.2 \mathrm{eq}$) of 9 -fluorenone and 2 mL of tert-butyl methyl ether. The test tube was then placed in a 2 M aq. solution of sodium orthovanadate $\left(\mathrm{Na}_{3} \mathrm{VO}_{4}\right)$ and irradiated with a medium pressure mercury arc lamp for 12 hours. This product mixture was purified by prep TLC ($25 \% \mathrm{EtOAc} / \mathrm{hexane}$) to afford 23 mg of the Z-dienoate 15 in 77% overall yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $5.60(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (dd, $J=2.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (dd, $J=2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24-4.21 (m, 2 H), 4.16-4.06 (m, $2 \mathrm{H}), 2.35$ (ddd, $J=13.2,6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 1 \mathrm{H})$, $1.61-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.32 \cdot 1.20(\mathrm{~m}, 6 \mathrm{H})$, $1.23(\mathrm{t}, J=7.2,3 \mathrm{H}$, overlapped), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.071(\mathrm{~s}, 3 \mathrm{H}), 0.068(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 165.9,153.5,117.3,111.9,76.3,74.4$, $68.4,59.7,50.9,44.4,29.7,25.83,25.77,25.5,23.0,18.2$, 18.1, 14.2, 14.0, -4.2, -4.6, -5.01, -5.03 ; FT•IR $\left(\mathrm{CHCl}_{3}\right) 2943,2857,1719,1472 \mathrm{~cm}^{-1}$; HRMS, $\mathrm{m} / \mathrm{e}\left(\mathrm{M}^{+}\right)$ calc. for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}_{2} 496.3404$, found 496.3410. $\left(\mathrm{M}^{+}{ }^{+} t \mathrm{Bu}\right)$ calc. 439.2700 , found 439.2699 .
Phosphine Oxide (-)-16. To a 25 mL flame dried round bottomed flask charged with $38.0 \mathrm{mg}(0.1 \mathrm{mmol})$ of the Z-dienoate 15 and 2 mL of anhydrous toluene was added $0.33 \mathrm{~mL}(0.3 \mathrm{mmol}, 3 \mathrm{eq}$.) of DIBAL-H (1.0 M in toluene) at $-78^{\circ} \mathrm{C}$. After 55 min . at $-78^{\circ} \mathrm{C}$, the reaction mixture was treated with 3 mL of sodium potassium tartrate (2 M in $\mathrm{H}_{2} \mathrm{O}$ and EtOH) at $-78^{\circ} \mathrm{C}$. The product mixture was then warmed to RT , stirred for 10 min and diluted with
$\mathrm{H}_{2} \mathrm{O}$. The solution was extracted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 20 mL of CHCl_{3}. The combined organic solution was dried over MgSO_{4} and concentrated in vacuo to give 35 mg of the crude product allylic alcohol as a tan oil. To a separate 25 mL flame dried round bottomed flask charged with 78.0 mg (0.06 mmol) of NCS (N -chloro succinimide) and 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.05 \mathrm{~mL}(0.06 \mathrm{mmol})$ of DMS (dimethylsulfide) at $0{ }^{\circ} \mathrm{C}$ (reaction mixture immediately turned to white turbid solution). After 10 min at $0^{\circ} \mathrm{C}$, the reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ with dry iceethylene glycol bath. To this solution was added the crude allylic alcohol dissolved in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20{ }^{\circ} \mathrm{C}$. After 2 hours, the product mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic solution was dried over MgSO_{4}, concentrated by rotary evaporator and filtered through a plug of florisil with 20% EtOAc/hexane and concentrated in vacuo to give the crude allylic chloride as a tan oil. This crude allylic chloride was then placed in 10 mL flame dried round bottomed flask with 1 mL of THF. To this solution was added of potassium diphenylphosphine (1 M solution in THF) until the red color persisted (about 10 mL was added) at $-78{ }^{\circ} \mathrm{C}$. After 1 hour at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with 2 mL of $\mathrm{H}_{2} \mathrm{O}$, extracted with twice with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined solution was dried over MgSO_{4} and concentrated to reduced volume. To this solution was added 7 to 8 drops of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ at RT. After 20 min at RT, the reaction mixture was partitioned into $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was decanted, and the aqueous layer was extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined solution was then dried over MgSO_{4}, concentrated by rotary evaporator and purified by prep TLC (70% EtOAcfhexane) to afford 30 mg of the phosphine oxide (-)-16 as a white, viscous oil in 61% overall yield from the Z-dienoate 15. 'H NMR $\left(\mathrm{CDCl}_{3}\right)$ § 7.74-7.69 (m, $4 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 6 \mathrm{H}), 5.30(\mathrm{ddt}, J=14.0,7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dt}, J=6.8,3.6 \mathrm{~Hz}$, 1 H), 4.09 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (ddd, $J=22.8,14.8,8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.18 (ddd, $J=22.8,15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.30-2.24$ $(\mathrm{m}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.15$ (m, 6H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, overlapped), $0.82(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.006(\mathrm{~s}, 3 \mathrm{H}),-0.001(\mathrm{~s}, 3 \mathrm{H})$, $-0.032(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 146.7(\mathrm{t}, J=4.4 \mathrm{~Hz})$, $141.4(\mathrm{~d}, J=45.6 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=$ $18.4 \mathrm{~Hz}), 131.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 131.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 131.1$ (d, $J=27.6 \mathrm{~Hz}$), $131.0(\mathrm{~d}, J=27.6 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=18.4 \mathrm{~Hz})$, $128.5(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 114.3(\mathrm{~d}, J=30.4 \mathrm{~Hz}), 111.6-111.4$ (m), 74.5 (d, $J=9.2 \mathrm{~Hz}$), $68.4,50.9,43.5,31.2(\mathrm{~d}, J=28.2$ Hz), 29.7, 25.8, 22.9, 18.2, 18.1, 14.0, -4.3, -4.4, -4.9, - 5.0 ; FT-IR (CHCl_{3}) 3018, 2957, 2930, 2857, 1472, 1438 $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23} \mathrm{C}-5\left(0.007, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ HRMS, m/e (M+) calc. for $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{P} 638.3743$, found 638.3751 .

Acknowledgment. Work at the Johns Hopkins University was supported by N.I.H grant CA 44530.

References

1. (a) Posner, G. H.; Cho, C.-G.; Tizah, E.; Johson, N.; Horst, R. L.; Kobayashi, T.; Okano, T.; Tsugawa, N. J. Org. Chem. 1995, 60, 4617. (b) Posner, G. H.; Johnson, N. J. Org. Chem. 1994, 59, 7855. For biological
activities of vitamin D_{3} compounds, see: (c) Norman, A. W.; Nemere, J.; Muralidharan, K. R.; Okamura, W. H. Biochem. Biophys. Res. Comm. 1992, 189, 1450. (d) Nishi, Y.; Abe, S.; Kobayashi, T.; Okano, T.; Tsugawa, N.; Slatopolsky, E.; Brown, A. J.; Dusso, A.; Raisz, L. G. In Vitamin D: Gene Regulation, Structure-Function Analysis, and Clinical Applications; Norman, A. W., Bouilion, R., Thomsasset, R., Eds.; W. de Gruyter: New York, 1991; p 294.
2. For reviews, see: (a) Afarinkia, K.; Vinader, V.; Nelson, T. D.; Posner, G. H. Tetrahedron 1992, 48, 9111. (b) Krivta, V.; Fischer, W. Chimia 1993, 47, 3. (c) Posner, G. H. In Stereocontrolled Organic Synthesis-Chemistry for the 21st Century; Trost, B. M.; Beletskaya, I. P., Eds.; Blackwell Scientific Publications: Oxford, U.K., 1994; p 177. (d) Marko, I. E. Organometallic Reagents in Organic Synthesis; Academic Press: New York, 1994; Chapter 2, p 44.
3. For some of the recent examples on asymmetric cycloadditions, see: (a) Kozman, S.; Rawal, V. J. Am. Chem. Soc. 1997, 119, 7165. (b) Gilbertson, S. R.; Lopez, O. D. J. Am. Chem. Soc. 1997, 119, 3399. (c) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 2950.
4. For general review on intramolecular cycloadditions, see: (a) Roush, W, R. In Advances in Cycloadditions; Curran, D. P., Ed.; JAI: Greenwich, CT, 1990; Vol. 2, pp 91-146. (b) Marwoka, K.; Yamamoto, H. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH publishers: 1994; Chapter 9, p 413. (c) Taber, D. F. Intramolecular Diels-Alder and Alder Ene Reactions, Springer-Verlag: New York, 1984. (d) Taschner, M. Organic Synthesis: Theory and Application, JAI Press, 1989, vol 1, p 1. (e) Caruthers, W. Cycloaddition reactions in Organic Synthesis; Pergamon: New York, 1990. (i) Enders, D.; Meyer, O. Liebigs Ann. 1996, 1023.
5. Use of chiral thiazolidinethione for asymmetric
cycloaddition: (a) Evans, D. A.; Chapman, K. T.; Bisaha, J. Tetrahedron Lett. 1984, 25, 4071. (b) Iseki, K.; Nagai, T.; Kobayashi, Y. Tetrahedron Lett. 1993, 34, 2169.
6. Vinyl silane for IMDA: (a) Sieburth, S. M.; Fensterbank, L. J. Org. Chem. 1992, 57, 5279-5281. (b) Righi, P.; Marotta, E.; Landuzzi, A.; Rosini, G. J. Am. Chem. Soc. 1996, II8, 9446.
7. Posner, G. H.; Nelson, T. D.; Kinter, C. M.; Johnson, N. J. Org. Chem. 1992, 57, 4083.
8. For use of silaketals as tethered dienophiles for IMDA, see: (a) Shea, K. J.; Gauthier, D. R., Jr. Tetrahedron Lett. 1994, 35, 7311. (b) Garner, P. P.; Cox, P. B.; Klippenstein, S. J.; Young, W. J.; McConville, D. B. J. Org. Chem. 1994, 59, 6510. (c) Colombier, C.; Skrydstrup, T.; Beau, J.-M. Tetrahedron Lett. 1994, 35, 8167. (d) Fairbanks, A.; Perrin, E.; Sinay, P. Synlett 1996, 679.
9. The high pressure Diels-Alder cycloadditions of systems 3, 4, 7 proceeded in a concerted manner to provide different stereochemical outcomes. Details will be published elsewhere.
10 . For the synthesis of the system 7, see: ref 1(a).
10. For the detailed stereochemical assignments, see: ref 1(a).
11. Some of the recent examples: (a) Storer, J. W.; raimondi, L.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 96753. (b) Linkert, F.; Laschat, S.; Kotila, S.; Fox, T. Tetrahedron 1996, 52, 955 . (c) Leung, S.-W.; Singleton, D. J. Org, Chem. 1997, 62, 1955.
12. Mandai, T.; Imaji, M.; Takada, H.; Kawata, M.; Nokami, J.; Tsuji, J. J. Org. Chem. 1989, 54, 5395.
13. Posner, G. H.; Crouch, R. D.; Kinter, C. M.; Carry, J.C. J. Org. Chem. 1991, 56, 6981.
14. Lythgoe, B.; Moran, T. A.; Nambudiry, M. E. N.; Tideswell, J.; Wright, P. W. J. Chem. Soc. Perkin Trans. I 1978, 590.
