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Introduction

Gene regulation is a critical biological process that determines cellular identity and func-
tion. Systematic investigation of chromatin architecture has shown that the spatiotempo-
ral gene regulation process is tightly controlled by cis-regulatory elements (cREs), which 
modulate the activities of spatially distant promoters [1-4]. Previous studies have report-
ed that cREs are highly dynamic genomic entities whose dysregulation is associated with 
various human disorders, including genetic and complex diseases [5-7]. This is well de-
scribed in the 2019 professional release of the human gene mutation database (HGMD), 
where more than 4,500 disease-associated mutations are in regulatory sequences [8]. 
The distal target genes of cREs harboring genetic mutations have been identified as causal 
elements in human diseases. The representative example is polydactyly syndrome, a con-
genital limb malformation that results from point mutations in a Shh regulatory element 
[9]. However, the identification of such long-range regulation is difficult since cREs may 
regulate genes located beyond large genomic distances. In light of this, Hi-C is a novel 
technique that enables the investigation of genome-wide, all-to-all chromatin interactions 
and has substantially improved our view of cREs on long-range gene expression control 
through 3D chromatin organization [10-14].

The pathogenesis of complex diseases is an outcome of a heterogeneous cell popula-
tion and various causal genetic variants. The causal genetic variants and the functional 
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cell type in which these disease-associated variants may be active 
are often unclear. Although the recent development of single-cell 
RNA sequencing (scRNA-seq) technology has allowed the assess-
ment of the cell type-specific transcriptome, gene regulation that 
underlies the functional properties of complex diseases is not well 
understood. Therefore, we performed a comprehensive analysis of 
cell type-specific gene regulatory mechanisms by integrating pub-
licly available data on cell type-specific epigenome, single-cell tran-
scriptome, and 3D chromatin interactome surrounding human 
lung cancer. We explored the dynamics of epigenomic profiles of 
eight major cell types that exist in the tumor environment and the 
relationships of cell type‒specific regulatory elements with genetic 
risk variants. By integrating high-resolution chromatin contact 
maps and scRNA-seq data, we characterize cell type dependent 
expression profile of putative interaction target genes of lung can-
cer‒associated variant-harboring cREs, and identify a list of poten-
tial candidate genes associated with lung carcinoma and their rele-
vant cell type.

Methods

Epigenome profiling of regulatory genome elements
Nineteen H3K27ac chromatin immunoprecipitation followed by 
high-throughput DNA sequencing (ChIP-seq) datasets were 
downloaded from the Encyclopedia of DNA Elements (EN-
CODE) database, representing seven cell populations: epithelial (2 
primary epithelial cells from mammary gland, 1 primary epithelial 
cell from prostate), fibroblast (2 primary fibroblast cells from lung 
and IMR90 cell line), endothelial (2 primary cells from umbilical 
vein, 1 primary cell from brain microvasculature), T lymphocyte 
(1 primary T cell, 1 naïve thymus-derived CD4-positive primary 
cell, and 1 CD8-positive primary cell), natural killer (NK) cell (1 
natural killer primary cell), B lymphocyte (2 primary B cells, and 
GM12989 cell line), myeloid (3 CD14-positive primary mono-
cyte cells) [2,3]. H3K27ac ChIP-seq data for 3 lung cancer cell 
lines (A549, A427, and H322) were downloaded from the DBTSS 
database [15]. H3K27ac ChIP-seq data for two alveolar lung epi-
thelial cells representing squamous type 1 (AT1) cells and cuboi-
dal type 2 (AT2) cells were downloaded from NCBI Gene Expres-
sion Omnibus (GEO) database (accession code: GSE84273) 
[16]. Detailed sample information, biosample ID, and library ID 
for raw ChIP-seq data are described in Supplementary Table 1. 
The ChIP-seq reads were aligned against the human genome 
(hg19) using BWA-mem with default parameters. Non-uniquely 
mapped, low-quality (MAPQ <  10), and PCR duplicate reads 
were removed. Peak calling of individual ChIP-seq experiments 
was performed with MACS2 callpeak with a p-value threshold of 

1e-5 and with a respective input control used as the background 
[17]. cREs were obtained by selecting H3K27ac peaks located dis-
tal to promoters ( > 2.5 kb from transcription start site [TSS]), 
merging the peaks across the samples, and stitching peaks within a 
3 kb distance. For the quantification of cRE activity, reads per mil-
lion (RPM) values were calculated and quantile normalized across 
the samples for comparative analysis.

Collection of genome-wide association study–single nucleotide 
polymorphisms associated with lung cancer
A total of 286 genome-wide association study (GWAS)–single 
nucleotide polymorphism (SNPs) related to lung cancer were ob-
tained from the NHGRI-EBI GWAS catalog (downloaded on Au-
gust 20, 2019) [18], targeting nine traits as follows: familial lung 
adenocarcinoma, familial lung cancer, familial squamous cell lung 
carcinoma, non‒small cell lung cancer, non‒small cell lung cancer 
(recurrence rate), non‒small cell lung cancer (survival), small cell 
lung cancer (survival), small cell lung carcinoma, and squamous 
cell lung carcinoma. We expanded these tag SNPs by using linkage 
disequilibrium (LD) information (r2 >  0.8). The LD scores were 
calculated using PLINK for five ethnic populations obtained from 
1000 Genomes Phase 3 data. Tight LD associations (r2 >  0.8) re-
current in at least three ethnic groups were used for LD expansion. 
The number of total LD-expanded SNPs was 2,128, and these 
SNPs were stored in a manner that each of them was traceable 
back to its parental tag SNP.  

Mapping 3D long-range chromatin interactions
To obtain high-resolution chromatin contact maps in lung tissue, 
we downloaded in situ Hi-C data for A549 (lung carcinoma cell 
line), IMR90 (lung fibroblast cell line), GM12878 (lympho-
blastoid cell line), and HMEC (human mammary epithelial cell 
line) cells from the ENCODE database [2,3]. Detailed sample in-
formation, biosample ID, and library ID for the raw in situ HiC 
data are described in Supplementary Table 2. Raw Hi-C sequenced 
reads were mapped to the human reference genome (hg19) using 
BWA-mem (-M option). An in-house script was used to remove 
low-quality reads (MAPQ <  10), the reads that span ligation sites, 
chimeric reads, and self-interacting reads in which two fragments 
are located within 15 kb. The read pairs were merged together as 
paired-end aligned BAM files, and PCR duplicates were removed 
with Picard. Statistically significant contacts in Hi-C data were 
identified at a 5 kb resolution using Fit-Hi-C [19]. We used the de-
fault Fit-Hi-C code to calculate the Q-value for each bin pair with-
in a 1 Mb genomic window. A Q-value threshold (Q <  0.01) was 
used to define significant chromatin contacts.
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Identification of cell type–specific gene expression using 
scRNA-seq data
The raw UMI count matrix of scRNA-seq data for lung adenocar-
cinoma was downloaded from NCBI GEO with accession code 
GSE131907 [20]. Data covering 11 tumors and 11 distant normal 
lungs were selected and processed by using the Seurat R package 
v3.2.2 [21]. We discarded cells that expressed <  200 genes. To ex-
clude low-quality cells from our data, we filtered out the cells that 
expressed mitochondrial genes in >  20% of their total gene ex-
pression. In each cell, the gene expression was normalized on the 
basis of the total read count and log transformed. To align the cells 
originating from different samples, 5,000 highly variable genes 
from each sample were identified by the vst method. We found an-
chors and aligned the samples based on the top 10 canonical cor-
relation vectors. The aligned samples were scaled, and principal 
component analysis was conducted. Then, the cells were clustered 
by unsupervised clustering (0.5 resolution) and visualized by 
tSNE using the top 40 principal components (PCs). Known mark-
er genes were used to assign each subcluster to a corresponding 
cell population: EPCAM and KRT19 for epithelial cells, DCN and 
COL1A1 for fibroblasts, PECAM1 and CLDN5 for endothelial 
cells, CD3D and TRAC for T lymphocytes, NKG7 and GNLY for 
NK cells, CD79A and IGHM for B lymphocytes, LYZ and CD68 
for myeloid cells, and KIT and MS4A2 for mast cells.

Results

Identification of cell type‒specific cREs associated with 
human lung tissue
To characterize distal regulatory elements surrounding human 
lung tissue, we obtained 24 H3K27ac ChIP-seq datasets from the 
ENCODE, DBTSS, and GEO databases, representing eight major 
cell types (myeloid cells, T cells, B cells, NK cells, endothelial cells, 
epithelial cells, lung cancer cells, and fibroblasts) [2,3,15] and 
identified 86,312 distal cREs. The quantification of cRE activities 
in RPM indicated that the samples clustered according to cell type 
of origin (Fig. 1A), largely into two groups consisting of stromal 
(epithelial cells, endothelial cells, and fibroblasts) and immune 
cells (myeloid, NK, T, and B cells). The cRE profiles of lung cancer 
cell lines (A549, A427, and H322) were highly correlated with the 
epithelial cell type, reminiscent of the cell type of their origin. We 
identified cell type enriched cREs using a quasi-likelihood F test 
(false discovery rate [FDR] <  0.05) in Bioconductor package 
EdgeR by contrasting each cell type to the other cell types [22], 
which resulted in 45,706 cell type‒specific cREs (9,707 for lung 
cancer cells, 14,135 for epithelial cells, 6,952 for myeloid cells, 
5,486 for endothelial cells, 4,891 for B cells, 4,447 for fibroblasts, 

2,194 for T cells, and 193 for NK cells) (Fig. 1B). This large por-
tion of cell type‒specific cREs (52.95%) suggests a dynamic role of 
regulatory genomic elements in determining cellular identity.

Characterization of lung cancer–associated genetic variations 
with cell type–specific cREs 
To assess the association of common genetic risk variants for lung 
cancer with cREs with cell type annotation, we collected 286 tag 
SNPs from the NHGRI-EBI GWAS catalog (downloaded on 
2019.08.20) [18] covering nine lung cancer–related traits. Our 
LD-based association analysis (r2 >  0.8) showed that 21.33% (62 
of 286) of lung cancer SNPs were linked to cREs (Fig. 1C). 
Among them, 28 tag SNPs were associated with cell type-specific 
cREs (a full list with the corresponding cell type is provided in 
Table 1), and 34 tag SNPs were linked to constitutive cREs (Sup-
plementary Table 3). SNP-harboring cREs exhibited cell type‒
specific activities, and myeloid (n =  11) and epithelial (n =  10) 
cell types were recognized by having the most SNP-harboring 
cREs, highlighting a potential role of these cell types in lung car-
cinogenesis (Fig. 1D). 

Identification of distal target genes of SNP-harboring cREs 
by high-resolution chromatin contact maps
Despite the enrichment of lung cancer‒associated genetic variants 
in cREs, their biological function in lung cancer is largely unknown 
due to the lack of information about their functional target genes. 
We hypothesized that investigating the physical chromatin con-
tacts between promoters and SNP-harboring cREs may substan-
tially advance our current knowledge regarding the possible regu-
latory role of noncoding genetic variants. To this end, we down-
loaded in situ Hi-C data for the A549, IMR90, GM12878, and 
HMEC cell lines from the ENCODE database [2,3], representing 
lung cancer, fibroblasts, myeloid cells, and epithelial cells, respec-
tively. We defined long-range chromatin interactions at 5 kb reso-
lution, implementing the Fit-Hi-C algorithm (FDR <  0.01) [19], 
which resulted in a total of 3,785,594 unbiased, all-to-all chroma-
tin interactions (1,905,639 for A549, 1,207,580 for IMR90, 
1,729,755 for GM12878, and 220,529 for HMEC). Focusing on 
the chromatin interactions connected to the well-annotated pro-
tein-coding gene promoters, we identified chromatin interactions 
anchored within 2.5 kb of a TSS. Comparison of these promot-
er-centered interactions across the cell types presented a highly 
dynamic pattern, with lung cancer (A549) and myeloid 
(GM12878) cells having a large number of unique chromatin in-
teractions, implicating differential spatial arrangements between 
cREs and promoters in those cell types (Fig. 2A). The average dis-
tance for long-range chromatin interactions was similar across cell 
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Fig. 1. Cell type-specific association of lung cancer–related genetic variants with cRE. (A) Pearson correlation heatmap illustrating 
the hierarchical relationship of cell type dependent cRE profiles comprising the major cell types in human lung tissue. (B) Heatmap of 
z-transformed RPM values of cell type–specific cREs. (C) Donut plot illustrating the association of lung cancer GWAS-SNPs with cis-
regulatory genome elements. (D) Heatmap of z-transformed RPM values of SNP-harboring cREs with samples in the column (shown in the 
same order as the heatmap in Fig. 1B). cRE, cis-regulatory elements; RPM, reads per million; GWAS, genome-wide association study; SNP, 
single nucleotide polymorphism; NK, natural killer. 

A B

C D

types (234 kb for A549, 222 kb for GM12878, 269 kb for IMR90, 
and 221 kb for HMEC) (Fig. 2B). Finally, we predicted putative 
target genes of cell type–specific cREs harboring lung cancer‒associ-
ated variants by using a union set of chromatin interactions (Fig. 2C). 
To assess the cell type–specificity of the inferred target genes, we 
integrated a scRNA-seq dataset generated from lung tissues of 11 
healthy individuals and 11 lung cancer patients [20]. We found 
that the inferred target genes showed a higher gene expression in 

the corresponding cell type compared to the randomly selected 
controls (empirical p =  0.0016 from 100,000 iterations) (Fig. 2D). 
Although the statistical testing for cell type specificity in target 
gene expression indicated insignificance in enrichment for epithe-
lial and myeloid cell types (Fisher’s exact test; p =  0.1591 for epi-
thelial and p =  0.607 for myeloid), we identified 20 and 5 putative 
target genes in epithelial and myeloid cells, respectively, with the 
highest gene expression in the corresponding cell type (Fig. 2E). 
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Table 1. Annotated list of lung cancer associated GWAS SNPs to cell type–specific cREs

Tag SNP rsID SNP (P) Trait Journal cRE coordinates
Cell type 
specificity 

(FDR)
Cell type

chr10.101946033 rs28372851 5.00.E-07 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr10:101951673-101953324 1.04.E-02 Myeloid

chr10:102012793-102017699 1.20.E-04 Myeloid
chr10:102049789-102052812 8.65.E-06 Myeloid

chr10.102048979 rs12765052 1.00.E-06 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr10:101923384-101944862 3.86.E-02 Myeloid

chr10:101951673-101953324 1.04.E-02 Myeloid
chr10:102012793-102017699 1.20.E-04 Myeloid
chr10:102049789-102052812 8.65.E-06 Myeloid

chr10.4961021 rs4453114 2.00.E-06 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr10:5003981-5007221 1.96.E-02 Epithelial

chr11.125510257 rs113301858 7.00.E-06 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr11:125543549-125544766 1.41.E-03 Endothelial

chr1.160210727 rs2369473 7.00.E-06 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr1:160315750-160319868 3.07.E-02 Myeloid

chr11.94284529 rs12279741 8.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr11:94279690-94284377 8.37.E-04 Myeloid
chr12.9058562 rs1073160 3.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr12:9052330-9056220 4.30.E-02 Myeloid
chr15.58418128 rs2704201 4.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr15:58434184-58441657 2.98.E-06 Myeloid
chr21.40173528 rs1209950 3.00.E-07 Non–small cell lung cancer 

(survival)
J Thorac Oncol (2010) [24] chr21:40169204-40174398 4.52.E-02 Cancer

chr2.152481712 rs10174077 1.00.E-06 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr2:152474585-152476605 2.78.E-06 Endothelial

chr2.17784157 rs13031455 2.00.E-06 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr2:17801191-17803176 1.15.E-06 Epithelial

chr2.225263527 rs6714462 8.00.E-06 Familial squamous cell lung 
carcinoma

Carcinogenesis (2018) [25] chr2:225270125-225272718 1.63.E-02 Endothelial

chr2.233426526 rs1656402 8.00.E-08 Non–small cell lung cancer 
(survival)

J Thorac Oncol (2010) [24] chr2:233453904-233458464 4.15.E-03 Epithelial

chr2.65832377 rs840781 8.00.E-07 Familial squamous cell lung 
carcinoma

Carcinogenesis (2018) [25] chr2:65832165-65835046 1.09.E-03 B cell

chr3.194858374 rs2131877 2.00.E-08 Non–small cell lung cancer Hum Mol Genet (2010) [26] chr3:194848773-194855042 7.36.E-03 B cell
chr5.72305846 rs258892 5.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr5:72083963-72085536 1.41.E-03 Epithelial

chr5:72166471-72170755 2.59.E-03 Endothelial
chr5.82418056 rs28745309 5.00.E-06 Squamous cell lung 

carcinoma
Nat Genet (2017) [23] chr5:82420842-82421162 4.56.E-02 Cancer

chr6.10415006 rs654351 2.00.E-06 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr6:10399644-10415402 1.50.E-02 Epithelial

chr6.26328353 rs34107459 1.00.E-10 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr6:26327078-26331665 1.11.E-02 Cancer

chr6.26403036 rs12200782 1.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr6:26393324-26393714 3.84.E-02 Myeloid
chr6.26581258 rs141670911 1.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr6:26393324-26393714 3.84.E-02 Myeloid

chr6:26462575-26465582 3.46.E-02 Epithelial
chr6.26651053 rs13201782 2.00.E-08 Squamous cell lung 

carcinoma
Nat Genet (2017) [23] chr6:26462575-26465582 3.46.E-02 Epithelial

chr6.26686131 rs10456332 7.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr6:26462575-26465582 3.46.E-02 Epithelial
chr6:26757238-26758412 3.93.E-04 Cancer
chr6:27144603-27146930 3.24.E-02 Cancer

chr6.30882415 rs114274879 3.00.E-16 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr6:30802423-30803200 9.81.E-04 T cell

chr6:30848819-30857882 4.56.E-02 Epithelial
chr6:30889573-30895783 2.35.E-03 Epithelial

chr6.32591476 rs112037939 2.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr6:32599939-32607692 6.99.E-04 B cell
Continued
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Tag SNP rsID SNP (P) Trait Journal cRE coordinates
Cell type 
specificity 

(FDR)
Cell type

chr6.32605884 rs74942078 3.00.E-17 Squamous cell lung 
carcinoma

Nat Genet (2017) [23] chr6:32568908-32579990 2.98.E-02 B cell

chr6:32599939-32607692 6.99.E-04 B cell
chr6:32652218-32660026 2.53.E-03 B cell

chr6.34923864 rs847845 6.00.E-06 Non-small cell lung cancer Carcinogenesis (2013) [27] chr6:34938580-34938872 5.21.E-03 Fibroblast
chr6.7770511 rs140013431 1.00.E-06 Small cell lung carcinoma Nat Genet (2017) [23] chr6:7770218-7770887 4.90.E-02 Endothelial

GWAS, genome-wide association study; SNP, single nucleotide polymorphism; cRE, cis-regulatory element; FDR, false discovery rate.

Table 1. Continued

In addition, we found that HYLS1, IL1R1, and PPP1R18 were in-
ferred target genes in endothelial, fibroblast, and T cell, respective-
ly, which also presented a cell type‒specific gene expression. The 
list of inferred target genes with cell type‒specific gene expression 
is provided in Table 2. The statistical insignificance in cell type 
specificity may be the result of the limited number of tested target 
genes and the insufficient transcripts detected in the correspond-
ing scRNA-seq technique. The improvement of scRNA-seq tech-
niques covering a higher number of transcripts will help make a 
clear conclusion in this matter. Altogether, the inference of target 
genes of cell type‒specific, SNP-harboring cREs by using 3D chro-
matin interaction profile provided considerable insights into func-
tionality of lung cancer‒ associated GWAS-SNPs.

Characterization of DDR1 and CD84 as potential risk 
factors associated with lung carcinogenesis
Since the number of putative target genes with cell type dependent 
expression was the most prevalent in epithelial and myeloid cells, 
we sought to pin-point specific risk candidate genes by taking a 
close examination of the epigenomic landscape surrounding the 
major cell types in the human lung. First, we found that an epithe-
lial-specific cRE (chr6:30,889,573-30,895,783; FDR =  1.61E-05) 
contains a SNP at chr6:30,894,965, which is linked to a tag SNP at 
chr6:30,882,415 (rs114274879) based on LD structure. The SNP 
was significantly associated with squamous cell lung carcinoma (p 
=  3.0E-16) [23]. The SNP-containing cRE was linked to the pro-
moter of DDR1 by significant long-range chromatin interaction at 
50 kb distance, which, in turn, (Fig. 3A). Interestingly, the function 
of DDR1 in tumor growth and metastasis displayed an epitheli-
al-specific expression has been previously recognized [28,29]. Next, 
we identified an additional, myeloid-specific cRE (chr1:160,315,750-
160,319,868; FDR =  0.030) that contains two LD-expanded SNPs 
at chr1:160,317,021 and chr1:160,317,619, whose parental tag SNP 
is located at chr1:160,210,727 (rs2369473). The SNP was reported 
for its association with squamous cell lung carcinoma (p =  7.0E-06) 
[23]. The SNP-containing cRE is linked to the promoter of CD84, 

a mediator of leukocyte function, by a significant long-range chro-
matin interaction stretching as far as 230 kb in distance (Fig. 3B). 
The recently demonstrated function of CD84 in chronic lympho-
cytic leukemia cells and their microenvironment may support the 
potential functional implication of CD84 in lung carcinogenesis 
[30]. Furthermore, single-cell transcriptome data indicated that 
the expression of CD84 is exclusive in myeloid cells (Fig. 3B). Our 
results highlight the potential role of DDR1 and CD84 in lung car-
cinogenesis within epithelial and myeloid populations, respective-
ly. The current work involving the functional annotation of lung 
cancer GWAS-SNPs and the inference of their putative target 
genes using 3D chromatin contact information effectively expands 
potential risk candidate genes and their relevant cell types, and of-
fers a rationale for a further investigation of its function in the des-
ignated cell type.

Discussion

We used a comprehensive multi-omics approach that integrates 
cell type‒specific epigenome, 3D chromatin interactome, and tran-
scriptome data to conduct a functional characterization of lung 
cancer‒associated GWAS risk variants. It is worth noting that the 
cellular identity in the global cRE landscape is well replicated re-
gardless of tissue origin, genetic background, and culture condi-
tion (e.g., primary cells and immortalized cell line), evidenced by 
the use of publicly available ChIP-seq data representing various 
cell types in the current study. This led us to effectively find a con-
siderable portion of risk genetic variants associated with cREs, tak-
ing into consideration the genetic LD. The categorization of lung 
cancer GWAS-SNPs into corresponding cell types provides addi-
tional insights into specific cellular populations responsible for 
lung carcinogenesis. Our results provide evidence that the identifi-
cation of the cell type-specific promoter-cRE interactome substan-
tially advances the interpretation of GWAS risk variants and 
broadens the scope for disease risk candidates for lung cancer. 

The recent advent of single-nucleus accessible chromatin profil-
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Fig. 2. Target gene identification of cell type-specific cREs harboring lung cancer-associated SNPs based on long-range chromatin 
interactions. (A) Chow-Ruskey plot with a 5 kb resolution promoter-centered chromatin interactions for GM12878, A549, HMEC, and IMR90 
cell lines, representing myeloid, lung cancer, endothelial, and fibroblast cell types, respectively. (B) Density plots illustrating the genomic 
distance of long-range chromatin interactions obtained from Hi-C data. The dashed line represents the mean distance. (C) A description 
of the functional link between SNP-harboring cREs and inferred target genes through a long-range chromatin contact. (D) Histograms 
illustrating distribution of the relative expression of randomly selected gene sets based on iterative tests (n = 100,000). Yellow dotted arrows 
indicate the observed expression of inferred target genes. (E) Gene expression (z-transformed normalized single-cell RNA sequencing counts) 
of putative target genes of cell type-specific cREs harboring lung cancer-related GWAS-SNPs across the cell types. Genes highlighted in 
translucent green, brown, purple, orange, yellow, and blue indicates putative targets of cell type-specific cREs in epithelial, endothelial, 
fibroblast, myeloid, B cells, and T cells, respectively. cRE, cis-regulatory elements; SNP, single nucleotide polymorphism; GWAS, genome-wide 
association study.
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Fig. 3. Epigenome landscape of putative target genes of cell type-specific cRE harboring lung cancer risk variants. (A) Left: Epigenome 
browser visualization of the DDR1 locus (chr6:30,985,829-30,985,829) showing the localization of lung cancer-related GWAS-SNPs, 
H3K27ac signals over seven individual cell types associated with the human lung, and 5 kb-resolution chromatin loops. The bars in dark 
orange indicate the location of cell type-specific cREs. The region of epithelial-specific cREs sharing lung cancer–related genetic variants 
is highlighted in translucent yellow. Right: DDR1 gene expression level across 7 major lung tissue cell types from scRNA-seq data. (B) Left: 
Epigenome browser visualization of the CD84 locus (chr1:160,197,000-160,668,000) showing the localization of lung cancer-related SNPs, 
H3K27ac signals over seven individual cell types associated with the human lung, and 5 kb-resolution chromatin loops. The bars in dark 
orange indicate the location of cell type dependent cREs. The region of myeloid-specific cREs sharing lung cancer risk variants is highlighted 
in translucent yellow. Right: CD84 gene expression level across 7 major lung tissue cell types from single-cell RNA-seq data. cRE, cis-
regulatory elements; GWAS, genome-wide association study; SNP, single nucleotide polymorphism; scRNA-seq, single-cell RNA-sequencing; 
LD, linkage disequilibrium.
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ing allows effective identification and characterization of cell pop-
ulations within human tissues. For example, the single-nucleus 
ATAC-seq (snATAC-seq) data from the human lung generated by 
Wang et al. [31] identified six sub-clusters in the epithelial popula-
tion (AT1/AT2, PNEC, club, basal, and ciliated cells) and cell 
type‒specific gene regulation associated with viral entry. However, 
the read-depth and coverage obtained in snATAC-seq data are 
considerably low for each cell type when compared with bulk 
ChIP-seq data utilizing primary cells and cell lines. The collection 
of individual ChIP-seq samples representing major cell types in 
the human lung, as conducted in this study, may allow a more dis-
crete cell type–specific investigation of regulatory dynamics. 
Moreover, the development of scRNA-seq allowed a popula-
tion-based analysis of transcriptome data. However, it is worth 
noting that the number of genes detected by scRNA-seq is limited 
to a few thousand, which largely restricted our scope of investigat-
ing the inferred target genes of cell type–specific cREs. Finally, the 
current work involving the functional annotation of lung cancer 
GWAS-SNPs and inference of their putative target genes is a nota-
ble endeavor, which will provide qualitative insights into disease 
mechanisms that may be of value in identifying new risk factors 
developing new approaches for prevention and treatment.
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