• 제목/요약/키워드: chloride ions diffusion coefficient

검색결과 42건 처리시간 0.023초

적용 전압 및 저항이 콘크리트의 염소이온 확산특성에 미치는 영향 (Effect of Applied Voltage and Resistivity on the Characteristics of Chloride Ions Diffusion in Concrete)

  • 임병탁;배수호;정영수;김진영;심은철;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.673-678
    • /
    • 2002
  • There are various methods for the electrochemical techniques to estimate diffusion coefficient of chloride ions in concrete, such as ASTM C 1202 test method, Andrade's method, Dhir's method, Tang's method, and etc. In the case of estimating diffusion coefficient of chloride ions in concrete by using these methods, applied voltage and resistivity nay exercise some influence on the characteristics of chloride ions diffusion. Thus. in this study, effect of applied voltage and resistivity on the characteristics of chloride ions diffusion in concrete were researched by applying voltage in 12V, 30V, and 60V, and by using resistivity in 0.2Ω and 1.0Ω, respectively. It can be concluded that diffusion coefficient of chloride ions are found to be increasing as the individual applied voltage and resistivity decrease, when water-cement ratio is constant.

  • PDF

무기질 도료를 이용한 시멘트 경화체의 C1 ̄이온확산과 콘크리트의 내구성 평가 (Evaluation of Chloride ions Diffusion on Hardened Cement paste And Durability of Concrete Specimen Using Inorganic Coating Material)

  • 김인섭;이종규;추용식;김병익;신영훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.221-226
    • /
    • 2001
  • Chloride diffusion effect of cement paste, freezing and thawing test, carbonation of concrete specimen were carried out using inorganic coating material. According to the chloride ions diffusion test, it is elucidated that permeability and diffusion coefficient of Cl ̄ ions and apparent coefficient of coated cement paste is smaller than plain cement paste. A durability of coated concrete specimen was enhanced by the experiment result of concrete carbonation and freezing thawing test.

  • PDF

Diffusion of Chloride Ions in Limestone Powder Concrete

  • Moon Han-Young;Jung Ho-Seop;Kim Jong-Pil
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.859-865
    • /
    • 2004
  • In this study, the diffusion of chloride ions in cement concrete made with and without the limestone powder was investigated. In order to study the effect of the limestone powder, all mixtures were prepared at a fixed water-cementitious ratio (0.45). From the experimental results, the setting time of limestone powder concrete is faster than that of control concrete, and compressive strength of all specimens decreased with increasing replacement ratio of limestone powders. The diffusion properties of limestone powder concretes indicated a trend increasing with curing period. LSA10 and LSA20 concretes, the diffusion coefficient was smaller than that of control concrete. The addition of $10-20\%$ limestone powder reduces the diffusion coefficient of chloride ions, irrespective of fineness levels of limestone powder.

고로슬래그미분말 혼합 콘크리트의 공극구조 및 염소이온 확산특성 (Characteristic of Pore Structure and Chloride ion Diffusion in Concrete Containing GGBF)

  • 문한영;김홍삼;최두선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.365-368
    • /
    • 2002
  • This paper considers transference number in calculating diffusion coefficient of chloride ions of concrete and mercury intrusion porosimetry to investigate the volume and distribution of pore size, respectively, analyzing and discussing the property of resistance to chloride ion of concrete with granulated blast furnace slag. The experimental results show that the diffusion coefficient of chloride ion decreases with the rise of quantity of granulated blast furnace slag and pore structure of concrete with granulated blast furnace slag is different from that of OPC concrete. And from the results of regression analysis, the result showed that the diffusion coefficient of chloride ions is affected by capillary pore above 50nm.

  • PDF

알칼리 활성 슬래그 콘크리트의 내구성: 콘크리트의 염소이온 확산 (Durability of Alkali-Activated Blast Furnace Slag Concrete: Chloride Ions Diffusion)

  • 홍기남;박재규;정규산;한상훈;김재현
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.120-127
    • /
    • 2015
  • The aim of the present study is to investigate some characteristics of concrete according to addition of blast furnace slag and alkali-activator dosages. Blast furnace slag was used at 30%, 50% replacement by weight of cement, and liquid sulfur having NaOH additives was chosen as the alkaline activator. In order to evaluate characteristics of blast furnace slag concrete with sulfur alkali activators, compressive strength test, total porosity, chloride ions diffusion coefficient test were performed. The early-compressive strength characteristics of blast furnace slag concrete using a sulufr-alkali activators was compared with those of reference concrete and added 30, 50% blast furnace slag concrete. Also, Blast furnace slag concrete using sulfur-alkali activators enhanced the total porosity, chloride ions diffusion coefficient than two standard concrete. Alkali-activated blast furnace slag concrete was related to total porosity, compressive strength and chloride ions diffusion coefficient each others. As a result, it should be noted that the sulfur-alkali activators can not only solve the demerit of blast furnace slag concrete but also offer the chloride resistance of blast furnace slag concrete using sulfur alkali activators to normal concrete.

Two Dimensional Chloride Ion Diffusion in Reinforced Concrete Structures for Railway

  • Kang, Bo-Soon;Shim, Hyung-Seop
    • International Journal of Railway
    • /
    • 제4권4호
    • /
    • pp.86-92
    • /
    • 2011
  • Chloride ion diffusion at the corner of rectangular-shaped concrete structures is presented. At the corner of rectangular-shaped concrete, chloride ion diffusion is in two-dimensional process. Chloride ions accumulate from two orthogonal directions, so that corrosion-free life of concrete structures is significantly reduced. A numerical procedure based on finite element method is used to solve the two-dimensional diffusion process. Orthotropic property of diffusion coefficient of concrete is considered and chloride ion profile obtained from numerical analysis is used to produce transformed diffusion coefficient. Comparisons of experimental data are also carried out to show the reliability of proposed numerical analysis. As a result of two-dimensional chloride diffusion, corrosion-free life of concrete structure for railway is estimated using probability of corrosion initiation. In addition, monographs that produces transformed diffusion coefficient and corrosion-free life of concrete structure are made for maintenance purpose.

  • PDF

혼합재 치환율에 따른 모르타르의 염소이온 확산 특성 (Characteristic of Chloride ion Diffusion in Mortar According to the Substitution Ratios of the Additive)

  • 양승규;정연식;이웅종;유재상;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.17-22
    • /
    • 2002
  • Chloride ions have a tendency to penetrate into concrete and proceed the corrosion by depassivating rebar surface. Thus the deteriorated concrete is subject to experience severe degrading of durability under marine environment. Physical properties of mortar, such as, compressive strength and penetration depth of chloride ion were investigated. And to investigate the effect of containing SG, FA in mortar, the diffusion coefficient of chloride was measured through an electro - migration test. The diffusion coefficient of chloride was decreased with the increase of replacement ratio of SG compared with plain specimen.

  • PDF

고르슬래그미분말을 다량 혼입한 콘크리트의 염분침투저항성 (Chloride Penetration Resistance of Concrete Mixed with High Volume Blast Furnace Slag)

  • 박기철;김동훈;박신;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.40-41
    • /
    • 2014
  • As a result of strength test on BFS concrete, those mixed with 30% and 50% of BFS8000, respectively, showed higher or equivalent strength compare to OPC. As a result of test of chloride penetration on BFS, diffusion coefficients of concrete mixed with 30% FA4000 and FA5000, respectively, showed to restrain average 6.5% of diffusion coefficient compared to OPC. And in case of BFS concrete, those mixed with BFS6000 and BFS8000, restrained diffusion of chloride ions 253% and 336%, respectively, compared to OPC. Therefore, Mixing 50% of BFS was most efficient in order to maximize restraint of chloride penetration according to metathesis of large amount. In this study, when mixing BFS to concrete for long-run durability and restraint against chloride penetration, for BFS, as fineness was higher and mixing it to concrete with less or equivalent 50% of replacement rate, there were results of higher strength compared to OPC and more efficient restraint of chloride ions.

  • PDF

혼화재 종류 및 치환율이 염수에 침지한 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구 (A Study on the Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Chloride Invasion Resistance Property of Concrete Immersed in Salt Water)

  • 유재강;김동석;박상준;원철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술대회지
    • /
    • pp.71-76
    • /
    • 2004
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for $3\sim4$ replacement ratios under W/B ratios ranged from 0.40 to 0.55. Specimens were immersed in $3.6\%$ NaCl solution for 330 days, and penetration depth, water soluble chloride contents and acid soluble chloride contents were measured in 28, 91, 182 and 330 days. Then, diffusion coefficient were calculated using total chloride contents. As a results. the kinds of mineral admixture and replacement ratios had a great effect on the resistance property of the concrete to chloride ion invasion compared with the plain concrete. And the optimal replacement ratios of mineral admixture had a limitation for each admixtures. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures and the penetration depth from the concrete skin. Chloride diffusion coefficient of each concretes decreased with the time elapsed. and the diffusion coefficients of the concrete immersed salt water for 330 days had a establishment with the compressive strength measured before immersing.

  • PDF

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.