• Title/Summary/Keyword: chitinase production

Search Result 92, Processing Time 0.022 seconds

Functional Characterization of Antagonistic Fluorescent Pseudomonads Associated with Rhizospheric Soil of Rice (Oryza sativa L.)

  • Ayyadurai, N.;Naik, P. Ravindra;Sakthivel, N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.919-927
    • /
    • 2007
  • Antagonistic fluorescent pseudomonads isolated from rhizospheric soil of rice were characterized by 16S rRNA amplicon and fatty acid methyl ester (FAME) analyses. Antagonistic isolates were grown in the fermentation media, and production of antibiotics was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Production of fungal cell-wall-degrading enzymes such as protease, cellulase, pectinase, and chitinase was determined. Dendrogram based on the major and differentiating fatty acids resulted into 5 clusters, viz., cluster I (P. pseudoalcaligenes group), cluster II (P. plecoglossicida group), cluster III (P. fluorescens group), cluster IV (P. aeruginosa group), and cluster V (P. putida group). Characteristic presence of high relative proportions of cyclopropane (17:0 CYCLO w7c) was observed in antagonistic bacteria. Data revealed biodiversity among antagonistic fluorescent pseudomonads associated with the rice rhizosphere. Results presented in this study will help to identify the antagonistic isolates and to determine their mechanisms that mediate antagonism against fungal pathogens of rice.

Inhibition of growth and toxin production of ochratoxigenic Aspergillus spp. by isolated bacteria (분리세균에 의한 ochratoxin 생성 Aspergillus spp.의 생장 및 독소생성 저해)

  • Hwang, Ji-Seon;Choi, Ho-Yeong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.226-233
    • /
    • 2019
  • Ochratoxin A (OTA) that is one of mycotoxins produced mainly by Aspergillus spp. is a common contaminant of stored grains and poses health hazards to human and livestock. The aim of this study is to explore the ability of isolated bacteria Bacillus subtilis AF13 and Streptomyces shenzhenensis YR226 to inhibit growth and OTA production of 3 ochratoxigenic Aspergillus strains. The antifungal activity against mycelial growth and sporulation of Aspergillus strains was examined by coculture with AF13 and YR226 on potato dextrose agar plate. AF13 and YR226 reduced 77.58 and 78.48% of fungal colony radius, respectively, and both strains inhibited fungal sporulation up to 99% in 10 days of incubation. YR226 also reduced more than 91% of spore germination of 3 fungal strains. When Aspergillus strains were cocultured with AF13 or YR226 in yeast extract sucrose medium, mycelial growth and OTA production decreased in all three fungal strains. In particular, AF13 completely inhibited the mycelial growth of A. alutaceus and inhibited its OTA production by 99%, and YR226 also reduced mycelial growth and toxin production up to 99%, respectively. Antimicrobial substances produced by AF13 and YR226 included siderophore, chitinase, protease, ${\beta}$-1,3-glucanase and biosurfactant. These results suggest that AF13 and YR226 can be used in a biological method to prevent valuable crops against mycotoxigenic fungi, and therefore decrease economic damage in agriculture and feed industry.

Effect of Salicylic Acid Formulations on Induced Plant Defense against Cassava Anthracnose Disease

  • Sangpueak, Rungthip;Phansak, Piyaporn;Thumanu, Kanjana;Siriwong, Supatcharee;Wongkaew, Sopone;Buensanteai, Natthiya
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.356-364
    • /
    • 2021
  • This study was to investigate defense mechanisms on cassava induced by salicylic acid formulation (SA) against anthracnose disease. Our results indicated that the SA could reduce anthracnose severity in cassava plants up to 33.3% under the greenhouse condition. The 𝛽-1,3-glucanase and chitinase enzyme activities were significantly increased at 24 hours after inoculation (HAI) and decrease at 48 HAI after Colletotrichum gloeosporioides challenge inoculation, respectively, for cassava treated with SA formulation. Synchrotron radiation-based Fourier-transform infrared microspectroscopy spectra revealed changes of the C=H stretching vibration (3,000-2,800 cm-1), pectin (1,740-1,700 cm-1), amide I protein (1,700-1,600 cm-1), amide II protein (1,600-1,500 cm-1), lignin (1,515 cm-1) as well as mainly C-O-C of polysaccharides (1,300-1,100 cm-1) in the leaf epidermal and mesophyll tissues treated with SA formulations, compared to those treated with fungicide carbendazim and distilled water after the challenged inoculation with C. gloeosporioides. The results indicate that biochemical changes in cassava leaf treated with SA played an important role in the enhancement of structural and chemical defense mechanisms leading to reduced anthracnose severity.

Characterization of L-asparaginase-producing Trichoderma spp. Isolated from Marine Environments

  • Woon-Jong, Yu;Dawoon, Chung;Yong Min, Kwon;Seung Sub, Bae;Eun-Seo, Cho;Hye Suck, An;Grace, Choi
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 2022
  • L-asparaginase (ASNase) is a therapeutic enzyme used to treat acute lymphoblastic leukemia. Currently, the most widely used ASNases are originated from bacteria. However, owing to the adverse effects of bacterial ASNases, new resources for ASNase production should be explored. Fungal enzymes are considered efficient and compatible resources of natural products for diverse applications. In particular, fungal species belonging to the genus Trichoderma are well-known producers of several commercial enzymes including cellulase, chitinase, and xylanase. However, enzyme production by marine-derived Trichoderma spp. remains to be elucidated. While screening for extracellular ASNase-producing fungi from marine environments, we found four strains showing extracellular ASNase activity. Based on the morphological and phylogenetic analyses using sequences of translation elongation factor 1-alpha (tef1α), the Trichoderma isolates were identified as T. afroharzianum, T. asperellem, T. citrinoviride, and Trichoderma sp. 1. All four strains showed different ASNase activities depending on the carbon sources. T. asperellem MABIK FU00000795 showed the highest ASNase value with lactose as a carbon source. Based on our findings, we propose that marine-derived Trichoderma spp. are potential candidates for novel ASNase production.

Plant Growth-Promoting Potential of Endophytic Bacteria Isolated from Roots of Coastal Sand Dune Plants

  • Shin, Dong-Sung;Park, Myung-Soo;Jung, Se-Ra;Lee, Myoung-Sook;Lee, Kang-Hyun;Bae, Kyung-Sook;Kim, Seung-Bum
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1361-1368
    • /
    • 2007
  • Endophytic bacteria associated with the roots of coastal sand dune plants were isolated, taxonomically characterized, and tested for their plant growth-promoting activities. Ninety-one endophytic bacterial isolates were collected and assigned to 17 different genera of 6 major bacterial phyla based on partial 16S rDNA sequence analyses. Gammaproteobacteria represented the majority of the isolates (65.9%), and members of Pseudomonas constituted 49.5% of the total isolates. When testing for antagonism towards plant pathogenic fungi, 25 strains were antagonistic towards Rhizoctonia solani, 57 strains were antagonistic towards Pythium ultimum, 53 strains were antagonistic towards Fusarium oxysporum, and 41 strains were antagonistic towards Botrytis cinerea. Seven strains were shown to produce indole acetic acid (IAA), 33 to produce siderophores, 23 to produce protease, 37 to produce pectinase, and 38 to produce chitinase. The broadest spectra of activities were observed among the Pseudomonas strains, indicating outstanding plant growth-promoting potential. The isolates from C. kobomugi and M. sibirica also exhibited good plant growth-promoting potential. The correlations among individual plant growth-promoting activities were examined using phi coefficients, and the resulting data indicated that the production of protease, pectinase, chitinase, and siderophores was highly related.

Effect of Gelatinase and Chitinase Producing Microorganism on the Growth of Soybean and Control of Stink Bug in Field

  • Lee, Yong-Seong;Jeon, Hyeon-Deok;Kim, Yun-Tae;Monkhung, Sararat;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.71-80
    • /
    • 2017
  • This study was conducted to investigate the application effect of Lysobacter antibioticus HS124 (gelatinase and chitinase producing microorganism; GCM) for the improvement of soybean yield and control of stink bug. Our results showed that the yield of GCM-treated soybean increased by 17.0, 20.3, 19.0, and 25.6% in the experimental field sites of Muan-gun, Sunchang-gun, Gwangju 1, and Gwangju 2, respectively, compared to the yield of the soybean obtained by conventional practice treatment (CPT); however in the Gimjae-si, the yield decreased by 10.6%. Results in both pods and seeds $plant^{-1}$ were significantly increased in Gwangju 2 by the GCM cultured broth treatment (GCMT). Ratio of 3 seeds $pod^{-1}$ in Sunchang-gun was statistically significant between GCMT and CPT, however, the result in the other field showed no significance. Germination rate was only statistically improved by GCMT in Gwangju 2 field site. GCMT reduced the appearance of stink bug in all experimental field sites except in Gimjae-si. The soybean seed damage by stink bug was no significance in all of treatments. Therefore, GCMT could improve the productivity of soybean and also control the infestation of stink bug.

Condition for Mass Production of Antagonistic Bacterium Burkholderia pyrrocinia CAB08106-4 to Control Garlic White Rot (마늘 흑색썩음균핵병 방제 길항세균 Burkholderia pyrrocinia CAB08106-4의 대량배양 조건)

  • Lee, Dong Guk;Lee, Eun Sook;Kim, Jeong Seok;Baek, Cheol Ki;Park, Mae Sol;Park, Eun Hee;Lee, Suk Hee;Chung, Chang Kook
    • The Korean Journal of Mycology
    • /
    • v.41 no.1
    • /
    • pp.42-46
    • /
    • 2013
  • Burkholderia pyrrocinia CAB08106-4 was parceled out from the Chungnam Agricultural Research and Extension Center, Korea to evaluate the antagonistic activity against garlic white rot caused by Sclerotium cepivorum. The optimum cultural conditions including temperature, pH, enzyme activity, carbon and nitrogen sources were determined. The optimum culture conditions of B. pyrrocinia CAB08106-4 were $286^{\circ}C$, 150 rpm and pH 7. Chitinase only showed activity among several tested enzymes. The highest cell growth was obtained with 1% glucose and 0.1% $(NH_4)_2SO_4$, respectively.

Protoplast Fusion Between Aspergillus oryzae and Aspergillus shirousamii (Aspergillus oryzae와 Aspergillus shirousamii간의 원형질체의 융합)

  • Shin, Dong-Bun;Ryu, Beung-Ho;Jin, Seung-Heun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.366-372
    • /
    • 1993
  • This study mainly designed to high quality of mirin production by using protopast fusion. In order to enhance the acid carboxypeptidase (ACPase) activity by the method of protoplast fusion. In order to enhance the acid carboxypeptidase (ACPase) activity by the method of protopalst fusion, the mutants, Aspergillus oryzae 9-12 and Aspergillus shirosamii IFO 6082-60 were selected by mutation among various mutants. Protoplast of Aspergillus oryzae 9-12 and Aspergillus shirousamii IFO 6082-60 were formed effectively by incubation of the mixtures of chitinase (10mg/ml), cellulase (10mg/ml) and zymolase 20T (5mg/ml). For protopalst fusion, the mixture of two mutant were fused to effective under the optimum conditions by solutions containing 30% PEG 6,000, 0.01M $CaCl_2\;2H_2O$, 0.6M KCl and 0.05M glycine. Fusion frequency was 0.71% and fusant, F-50 appeared ACPase activity of 20,800 unit/g which has 1.5 times higher than that of each mutants.

  • PDF

Baeuveria sp. C208의 대량 배양을 위한 생산배지의 최적화

  • Moon, Ki-Hyuk;Kim, Pyong-Hyok;Yoon, Jeong-Weon;Sung, Jae-Mo;Kim, Seung-Wook
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.606-611
    • /
    • 1997
  • Entomogenous fungi which attack living insects are powerful means for microbiological insecticide. The purpose of this study is to establish the culture conditions and media for mass production of Beauveria sp. C208 which has a broad host range as a potential microbiological pesticide. The temperature and pH range for optimal cultivation of this strain were 28$circ$C and pH 5.0-7.0. For Beauveria sp. C 208, 2% rice straw and 0.6% tryptone were found as the proper carbon and nitrogen sources, considering cell mass, enzyme activities such as chitinase, protease and lipase, and spore concentration.

  • PDF

Keratinase Production by Recalcitrant Feather Degrading Pseudomonas Geniculata and Its Plant Growth Promoting Activity (난분해성 우모분해 Pseudomonas geniculata에 의한 케라틴 분해효소 생산 및 식물성장 촉진 활성)

  • Go, Tae-Hun;Lee, Sang-Mee;Lee, Na-Ri;Jeong, Seong-Yun;Hong, Chang-Oh;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1457-1464
    • /
    • 2013
  • We investigated the optimal conditions for keratinase production by feather-degrading Pseudomonas geniculata H10 using one variable at a time (OVT) method. The optimal medium composition and cultural condition for keratinase production were determined to be glucose 0.15% (w/v), beef extract 0.08% (w/v), $KH_2PO_4$ 0.12% (w/v), $K_2HPO_4$ 0.02% (w/v), NaCl 0.07% (w/v), $MgSO_4{\cdot}7H_2O$ 0.03%, $MgCl_2{\cdot}6H_2O$ 0.04% along with initial pH 10 at 200 rpm and $25^{\circ}C$, respectively. The production yield of keratinase was 31.6 U/ml in an optimal condition, showing 4.6-fold higher than that in basal medium. The strain H10 also showed plant growth promoting activities. This strain had ammonification activity and produced indoleacetic acid (IAA), siderophore and a variety of hydrolytic enzymes such as protease, lipase and chitinase. Therefore, this study showed that P. geniculata H10 could be not only used to upgrade the nutritional value of feather wastes but also useful in situ biodegradation of feather wastes. Moreover, it is also a potential candidate for the development of biofertilizing agent applicable to crop plant soil.