Browse > Article

Functional Characterization of Antagonistic Fluorescent Pseudomonads Associated with Rhizospheric Soil of Rice (Oryza sativa L.)  

Ayyadurai, N. (Department of Biotechnology, Pondicherry University)
Naik, P. Ravindra (Department of Biotechnology, Pondicherry University)
Sakthivel, N. (Department of Biotechnology, Pondicherry University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.6, 2007 , pp. 919-927 More about this Journal
Abstract
Antagonistic fluorescent pseudomonads isolated from rhizospheric soil of rice were characterized by 16S rRNA amplicon and fatty acid methyl ester (FAME) analyses. Antagonistic isolates were grown in the fermentation media, and production of antibiotics was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Production of fungal cell-wall-degrading enzymes such as protease, cellulase, pectinase, and chitinase was determined. Dendrogram based on the major and differentiating fatty acids resulted into 5 clusters, viz., cluster I (P. pseudoalcaligenes group), cluster II (P. plecoglossicida group), cluster III (P. fluorescens group), cluster IV (P. aeruginosa group), and cluster V (P. putida group). Characteristic presence of high relative proportions of cyclopropane (17:0 CYCLO w7c) was observed in antagonistic bacteria. Data revealed biodiversity among antagonistic fluorescent pseudomonads associated with the rice rhizosphere. Results presented in this study will help to identify the antagonistic isolates and to determine their mechanisms that mediate antagonism against fungal pathogens of rice.
Keywords
Antagoniistic fluorescent pseudomonads; antibiotics; FAME; cyclopropane; dendrogram; 16S rRNA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
1 Bakker, W. A. and B. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol. Biochem. 19: 451-457   DOI   ScienceOn
2 Ellis, R. J., I. P. Thompson, and M. J. Bailey. 1999. Temporal fluctuations in the pseudomonad population associated with sugar beet leaves. FEMS Microbiol. Ecol. 28: 345-356   DOI   ScienceOn
3 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120   DOI
4 Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245   DOI
5 Renwick, A., R. Campbell, and S. Coe. 1991. Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol. 40: 524-532   DOI
6 Smibert, R. M. and N. R. Krieg. 1994. Phenotypic characterization, pp. 607-654. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. American Society of Microbiology, Washington, D.C
7 Vancanneyt, M., S. Witt, W. R. Abraham, K. Kersters, and H. L. Fredrickson. 1996. Fatty acid content in whole-cell hydrolysates and phospholipids fractions of pseudomonads: A taxonomic evaluation. Syst. Appl. Microbiol. 19: 528- 540   DOI
8 Van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483   DOI   ScienceOn
9 Sunish Kumar, R., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, O. Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154   DOI   ScienceOn
10 Cattelan, A. J., P. G. Hartel, and F. F. Fuhrmann. 1999. Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680   DOI
11 Thomashow, L. S., D. M. Weller, R. F. Bonsall, and L. S. Pierson. 1990. Production of the antibiotic phenazine-1- carboxylic acid of fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908- 912
12 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
13 Keel, C., U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, D. Haas, and G. Defago. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Inter. 5: 4- 13   DOI
14 King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307
15 de Souza, J. T. and J. M. Raaijmakers. 2003. Polymorphisms within the PrnD and PltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 43: 21-34
16 Ellis, R. J., T. M. Timms-Wilson, and M. J. Bailey. 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol. 2: 274-284   DOI   ScienceOn
17 Ravindra Naik, P. and N. Sakthivel. 2006. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res. Microbiol. 157: 538-546   DOI   ScienceOn
18 Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine-1- carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90   과학기술학회마을
19 Sakthivel, N. and S. S. Gnanamanickam. 1987. Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl. Environ. Microbiol. 53: 2056-2059
20 O'Sullivan, D. J. and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662-676
21 Sakthivel, N. and S. S. Gnanamanickam. 1989. Incidence of different biovars of Pseudomonas fluorescens in flooded rice rhizospheres in India. Agric. Ecosyst. Environ. 25: 287-298   DOI   ScienceOn
22 Mew, T. W. and A. M. Rosales. 1986. Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani. Phytopathology 76: 1260-1264   DOI
23 Higgins, D. G., A. T. Bleashy, and R. Fuchs. 1992. Clustal V: Improved software for multiple sequence alignment. Comput. Appl. Biosci. 8: 189-191
24 Wang, A. Y. and J. J. E. Cronan. 1994. The growth phasedependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an rpoS (KatF)-dependent promoter plus enzyme instability. Mol. Microbiol. 11: 1009-1017   DOI   ScienceOn
25 Weisburg, W. G., S. M. Barns, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703   DOI
26 Ahn, T., J. Ka, G. Lee, and H. Song. 2007. Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria. J. Microbiol. Biotechnol. 17: 52-57   과학기술학회마을
27 Emmert, E. A. B. and J. Handelsman. 1999. Biocontrol of plant disease: A (Gram) positive perspective. FEMS Microbiol. Lett. 171: 1-9   DOI   ScienceOn
28 Sands, D. C. and A. D. Rovira. 1971. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonads in south Australian soils and wheat rhizosphere. J. Appl. Bacteriol. 34: 261-275   DOI
29 Ayyadurai, N., P. Ravindra Naik, M. Sreehari Rao, R. Sunish Kumar, S. K. Samrat, M. Manohar, and N. Sakthivel. 2006. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J. Appl. Microbiol. 100: 926- 937   DOI   ScienceOn