Browse > Article

Plant Growth-Promoting Potential of Endophytic Bacteria Isolated from Roots of Coastal Sand Dune Plants  

Shin, Dong-Sung (Department of Microbiology, Chungnam National University)
Park, Myung-Soo (Department of Applied Microbiology, Chungnam National University)
Jung, Se-Ra (Department of Biomedicine and Biotechnology, Chungnam National University)
Lee, Myoung-Sook (Food Analysis Research Center, Suwon Women's College)
Lee, Kang-Hyun (Korea Research Institute of Bioscience and Biotechnology)
Bae, Kyung-Sook (Korea Research Institute of Bioscience and Biotechnology)
Kim, Seung-Bum (Department of Microbiology, Chungnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.8, 2007 , pp. 1361-1368 More about this Journal
Abstract
Endophytic bacteria associated with the roots of coastal sand dune plants were isolated, taxonomically characterized, and tested for their plant growth-promoting activities. Ninety-one endophytic bacterial isolates were collected and assigned to 17 different genera of 6 major bacterial phyla based on partial 16S rDNA sequence analyses. Gammaproteobacteria represented the majority of the isolates (65.9%), and members of Pseudomonas constituted 49.5% of the total isolates. When testing for antagonism towards plant pathogenic fungi, 25 strains were antagonistic towards Rhizoctonia solani, 57 strains were antagonistic towards Pythium ultimum, 53 strains were antagonistic towards Fusarium oxysporum, and 41 strains were antagonistic towards Botrytis cinerea. Seven strains were shown to produce indole acetic acid (IAA), 33 to produce siderophores, 23 to produce protease, 37 to produce pectinase, and 38 to produce chitinase. The broadest spectra of activities were observed among the Pseudomonas strains, indicating outstanding plant growth-promoting potential. The isolates from C. kobomugi and M. sibirica also exhibited good plant growth-promoting potential. The correlations among individual plant growth-promoting activities were examined using phi coefficients, and the resulting data indicated that the production of protease, pectinase, chitinase, and siderophores was highly related.
Keywords
Endophytic bacteria; sand dune; Pseudomonas; phi coefficient;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Chernin, L., Z. Ismailov, S. Haran, and I. Chet. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61: 1720-1726
2 Dalton, D. A., S. Kramer, N. Azios, S. Fusaro, E. Cahill, and C. Kennedy. 2004. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol. Ecol. 49: 469-479   DOI   ScienceOn
3 Garrity, G. M. and J. G. Holt. 2001. The road map to the Manual, pp. 119-166. In D. R. Boone, R. W. Castenholz, and G. M. Garrity (eds.), Bergey's Manual of Systematic Bacteriology, Second Edition, Vol. 1. Springer-Verlag, New York, U.S.A
4 Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117   DOI   ScienceOn
5 Lee, M. S., J. O. Do, M. S. Park, S. Jung, K. H. Lee, K. S. Bae, S. J. Park, and S. B. Kim. 2006. Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie van Leeuwenhoek 90: 19-27   DOI   ScienceOn
6 Lee, Y. K., Y. S. Jang, H. H. Chang, S. W. Hyung, and H. Y. Chung. 2005. A putative early response of antifungal Bacillus lentimorbus WJ5 against the plant pathogenic fungus, Colletotrichum gloeosporioides, analyzed by a DNA microarray. J. Microbiol. 43: 308-312   과학기술학회마을
7 Opelt, K. and G. Berg. 2004. Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic sea coast. Appl. Environ. Microbiol. 70: 6569-6579   DOI   ScienceOn
8 Park, M. S., S. R. Jung, K. H. Lee, M. S. Lee, J. O. Do, S. B. Kim, and K. S. Bae. 2006. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int. J. Syst. Evol. Microbiol. 56: 433-438   DOI   ScienceOn
9 Sawar, M. and R. J. Kremer. 1995. Determination of bacterially derived auxins using a microplate method. Lett. Appl. Microbiol. 20: 282-285   DOI   ScienceOn
10 Weon, H. Y., B. Y. Kim, S. H. Yoo, S. W. Kwon, Y. H. Cho, S. J. Go, and E. Stackebrandt. 2006. Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int. J. Syst. Evol. Microbiol. 56: 1501-1504   DOI   ScienceOn
11 van Buren, A. M., C. Andre, and C. A. Ishimaru. 1993. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology 83: 1406
12 Moore, F. P., T. Barac, B. Borremans, L. Oeyen, J. Vangronsveld, D. van der Lelie, C. D. Campbell, and E. R. Moore. 2006. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterisation of isolates with potential to enhance phytoremediation. Syst. Appl. Microbiol. 29: 539-556   DOI   ScienceOn
13 Sehwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56   DOI   ScienceOn
14 Khalid, A., M. Arshad, and Z. A. Aahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473-480   DOI   ScienceOn
15 Jeon, J. S., S. S. Lee, H. Y. Kim, T. S. Ahn, and H. G. Song. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41: 271-276
16 Kowalchuk, G. A., F. A. de Souza, and J. A. van Veen. 2002. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol. Ecol. 11: 571-581   DOI   ScienceOn
17 Hallmann, J., A. Quadt-Hallmann, W. F. Mahaffee, and J. W. Kloepper. 1997. Endophytic bacteria in agricultural crops. Can. J. Microbiol. 43: 895-914   DOI   ScienceOn
18 Park, M. S., S. R. Jung, M. S. Lee, K. O. Kim, J. O. Do, K. H. Lee, S. B. Kim, and K. S. Bae. 2005. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J. Microbiol. 43: 219-227   과학기술학회마을
19 Ryu, J. H., M. Madhaiyan, S. Poonguzhali, W. J. Yim, P. Indiragandhi, K. A. Kim, R. Anandham, J. C. Yun, K. H. Kim, and T. M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628   과학기술학회마을
20 Ryu, C. M., J. W. Kim, O. H. Choi, S. Y. Park, S. H. Park, and C. S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991   과학기술학회마을
21 Sturz, A. V., B. R. Christie, B. G. Matheson, W. J. Arsenault, and N. A. Buchanan. 1999. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol. 48: 360-369   DOI
22 Lucy, M., E. Reed, B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25   DOI   ScienceOn
23 Bloemberg, G. V. and B. J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350   DOI   ScienceOn
24 Reiter, B., U. Pfeifer, H. Schwab, and A. Sessitsch. 2002. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl. Environ. Microbiol. 68: 2261-2268   DOI   ScienceOn
25 Sessitsch, A., B. Reiter, and G. Berg. 2004. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can. J. Microbiol. 50: 239-249   DOI   ScienceOn
26 Downing, K. J. and J. A. Thomson. 2000. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can. J. Microbiol. 46: 363-369   DOI   ScienceOn
27 Kim, J. W., E. H. Kim, Y. S. Kang, O. H. Choi, C. S. Park, and I. G. Hwang. 2006. Molecular characterization of biosynthetic genes of an antifungal compound produced by Pseudomonas fluorescens MC07. J. Microbiol. Biotechnol. 16: 450-456   과학기술학회마을
28 Selosse, M. A., E. Baudoin, and P. Vandenkoornhuyse. 2004. Symbiotic microorganisms, a key for ecological success and protection of plants. C.R. Biol. 327: 639-648   DOI   ScienceOn
29 Young, C. C., P. Kämpfer, F. T. Shen, W. A. Lai, and A. B. Arun. 2005. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int. J. Syst. Evol. Microbiol. 55: 423-426   DOI   ScienceOn
30 Cho, S.-H., J. H. Han, C. N. Seong, and S. B. Kim. 2006. Phylogenetic diversity of acidophilic sporoactinobacteria isolated from various soils. J. Microbiol. 44: 600-606   과학기술학회마을
31 Joo, G. J., Y. M. Kim, J. T. Kim, I. K. Rhee, J. H. Kim, and I. J. Lee. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43: 510-515   과학기술학회마을
32 Compant, S., B. Duffy, J. Nowak, C. Clement, and E. A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959   DOI   ScienceOn
33 Huguet, V., J. M. Batzli, J. F. Zimpfer, P. Normand, J. O. Dawson, and M. P. Fernandez. 2001. Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl. Environ. Microbiol. 67: 2116-2122   DOI   ScienceOn
34 Sylvia, D. M. and N. J. Burks. 1988. Selection of a vesiculararbuscular mycorrhizal fungus for practical inoculation of Uniola paniculata. Mycologia 80: 565-568   DOI