Browse > Article
http://dx.doi.org/10.5322/JESI.2013.22.11.1457

Keratinase Production by Recalcitrant Feather Degrading Pseudomonas Geniculata and Its Plant Growth Promoting Activity  

Go, Tae-Hun (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University)
Lee, Sang-Mee (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University)
Lee, Na-Ri (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University)
Jeong, Seong-Yun (Department of Medical Life Science, Catholic University of Daegu)
Hong, Chang-Oh (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University)
Son, Hong-Joo (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University)
Publication Information
Journal of Environmental Science International / v.22, no.11, 2013 , pp. 1457-1464 More about this Journal
Abstract
We investigated the optimal conditions for keratinase production by feather-degrading Pseudomonas geniculata H10 using one variable at a time (OVT) method. The optimal medium composition and cultural condition for keratinase production were determined to be glucose 0.15% (w/v), beef extract 0.08% (w/v), $KH_2PO_4$ 0.12% (w/v), $K_2HPO_4$ 0.02% (w/v), NaCl 0.07% (w/v), $MgSO_4{\cdot}7H_2O$ 0.03%, $MgCl_2{\cdot}6H_2O$ 0.04% along with initial pH 10 at 200 rpm and $25^{\circ}C$, respectively. The production yield of keratinase was 31.6 U/ml in an optimal condition, showing 4.6-fold higher than that in basal medium. The strain H10 also showed plant growth promoting activities. This strain had ammonification activity and produced indoleacetic acid (IAA), siderophore and a variety of hydrolytic enzymes such as protease, lipase and chitinase. Therefore, this study showed that P. geniculata H10 could be not only used to upgrade the nutritional value of feather wastes but also useful in situ biodegradation of feather wastes. Moreover, it is also a potential candidate for the development of biofertilizing agent applicable to crop plant soil.
Keywords
Biofertilizer; Feather waste; Keratinase; Pseudomonas geniculata;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bertsch, A., Coello, N., 2005, A biotechnological process for treatment and recycling poultry feathers as a feed ingredient, Bioresource Technol., 96, 1703-1708.   DOI   ScienceOn
2 Bockle, B., Galunski, B., Muller, R., 1995, Characterization of a keratinolytic serine protease from Streptomyces pactum DSM40530, Appl. Environ. Microbiol., 61, 3705-3710.
3 Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254.   DOI   ScienceOn
4 Chon, D. H., Kang, S. M., Kwon, T. J., 2003, Purification and some properties of protease produced by Pseudomonas sp. KP-364, Kor. J. Microbiol. Biotechnol., 31, 224-229.   과학기술학회마을
5 Dye, R., Pal, K. K., Bhatt, D. M., Chauhan, S. M., 2004, Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria, Microbiol. Res., 159, 371-394.   DOI   ScienceOn
6 Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., Phillips, G. B., 1981, Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.C.
7 Go, T. H., Jeong, J. H., Lee, N. R., Jeong, S. Y., Park, G. T., Son, H. J., 2012, Isolation and characterization of duck feather-degrading microorganism for treatment of recalcitrant ketinous waste, J. Environ. Sci., 21, 253-231.
8 Hadas, A., Kautsky, L., 1994, Feather meal, a semi-slow release nitrogen fertilizer for organic farm, Fertilizer Res., 38, 165-170.   DOI
9 Jeong, J. H., Jeon, Y. D., Lee, O. M., Kim, J. D., Lee, N R., Park, G. T., Son, H. J., 2010a, Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil, Biodegradation, 21, 1029-1040.   DOI
10 Jeong, J. H., Park, K. H., Oh, D. J., Hwang, D. Y., Kim, H. S., Lee, C. Y., Son, H. J. 2010b. Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5, Polym. Degrad. Stab., 95, 1969-1977.   DOI   ScienceOn
11 Khalid, A., Arshad, M., Zahir, Z. A., 2004, Screening of plant growth-promoting rhizobacteria for improving growth and yield of wheat, J. Appl. Microbiol., 96, 473-480.   DOI   ScienceOn
12 Lee, K. H., Park, K. K., Park, S. H., Lee, J. B., 1987, Isolation, purification and characterization of keratinolytic proteinase from Microsporum canis, Yonsei Med. J., 28, 131-138.   DOI
13 Lin, X., Lee, C. G., Casale, E. S., Shih, J. C. H., 1992, Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain, Appl. Environ. Microbiol., 58, 3271-3275.
14 Pandey, P., Kang, S. C., Gupta, C. P., Maheshwari, D. K., 2005, Rhizosphere competent Pseudomonas areuginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris), Curr. Microbiol., 51, 303-309.   DOI   ScienceOn
15 Mitsuiki, S., Ichikawa, M., Oka, T., Sakai, M., Moriyama, Y., Sameshima, Y., Goto, M., Furukawa, K., 2004, Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1, Enz. Microb. Technol., 34, 482-489.   DOI   ScienceOn
16 Nustorova, M., Braikova, D., Gousterova, A., Vasileva- Tonkova, E., Nedkov, P., 2005, Chemical, microbiological and plant analysis of soil fertilized with alkaline hydrolysate of sheep's wool waste, World J. Microbiol. Biotechnol., 22, 383-390.
17 Onifade, A. A., Al-Sane, N. A., Al-Musallam, A. A., Al-Zarban, S., 1998, Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources, Bioresource Technol., 66, 1-11.   DOI   ScienceOn
18 Papadoulos, M. C., Ketelaars, E. H., 1986, Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal, Anim. Feed Sci. Technol., 14, 279-290.   DOI   ScienceOn
19 Parag, A. M., Hassan, M. A., 2004, Purification, characterization and immobilization of a keratinase from Aspergillus oryzae, Enz. Microb. Technol., 34, 85-93.   DOI   ScienceOn
20 Rao, M. B., Tanksale, A. M., Ghatge, M. S., Deshpande, V. V., 1998, Molecular and biotechnological aspects of microbial proteases, Microbiol. Mol. Biol. Rev., 62, 597-635.
21 Suntornsuk, W., Suntornsuk, L., 2003, Feather degradation by Bacillus sp. FK46 in submerged cultivation, Bioresource Technol., 86, 239-243.   DOI   ScienceOn
22 Riffel, A., Brandelli, A., Bellato, C. M., Souza, G. H. M. F., Eberlin, M. N., Tavares, F. C. A., 2007, Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6, J. Biotechnol., 128, 693-703.   DOI   ScienceOn
23 Sangali, S., Brandelli, A., 2000, Feather keratin hydrolysis by a Vibrio sp. strain kr2, J. Appl. Microbiol., 89, 735-743.   DOI   ScienceOn
24 Schwyn, B., Neilands, J. B., 1987, Universal chemical assay for the detection and determination of siderophores, Anal. Biochem., 160, 47-56.   DOI   ScienceOn
25 Tang, Y. W., Bonner, J., 1947, The enzymatic inactivation of indoleacetic acid I. Some characteristics of the enzyme contained in pea seedlings, Arch. Biochem., 13, 17-25.
26 Wang, J. J., Shih, J. C. H., 1999, Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29, J. Ind. Microbiol. Biotechnol., 22, 608-616.   DOI   ScienceOn
27 Wawrzkiewicz, K., Lobarzewski, J., Wolski, T., 1987, Intracellular keratinase of Trichophyton gallinae. J. Med. Vet. Mycol., 25, 261-268.   DOI   ScienceOn
28 Zaghloul, T. I., 1998, Cloned Bacillus subtilis alkaline protease (apr A) gene showing high level of keratinolytic activity, Appl. Biochem. Biotechnol., 70-72, 199-205.   DOI   ScienceOn