• Title/Summary/Keyword: chitinase activity

Search Result 203, Processing Time 0.034 seconds

Korean-Style No-tillage Organic Agriculture on Recycled Ridge IV. Changes in Soil Microorganisms and Enzymes by Split Irrigation and Organic Matter Application in Organic Farming of Red Pepper in Plastic Film Greenhouse (두둑을 재활용한 한국형 무경운 유기 농업 IV. 분할관수와 유기물처리에 의한 시설 고추 유기재배 토양 미생물상과 토양 효소의 변화)

  • Yang, Seung-Koo;Shin, Kil-Ho;Song, Yong-Su;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.311-328
    • /
    • 2017
  • This study was carried out to investigate the changes in soil microorganisms and soil enzymes by split irrigation and organic matter application under no-tillage green house conditions. Soil bacteria and fungi abundances were higher in soybean cake fertilizer than in the soil without the soybean cake fertilizer under whole quantity irrigation. Bacteria and fungi abundances in soil increased with increasing organic fertilizer application rate. Bacteria and fungi amount in the soil increased at half division irrigation in no-treatment of soybean cake fertilizer compared with whole quantity irrigation. Actinomycete amount in the soil decreased with increasing soybean cake fertilizer with whole quantity irrigation while clearly increased in no-treatment of soybean cake fertilizer. Actinomycete amount in soil clearly increased with increasing organic fertilizer input at half division irrigation. Chitinase activity in the soil decreased in soybean cake fertilizer with increasing organic fertilizer input, while increased in no-treatment of soybean cake fertilizer. Chitinase activity in the soil increased at half division irrigation compared with whole quantity irrigation regardless of soybean cake fertilizer input. ${\beta}$-Glucosidase activity in the soil was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. ${\beta}$-Glucosidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. ${\beta}$-Glucosidase activity in the soil clearly increased in no-treatment of soybean cake fertilizer at half division irrigation compared with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil was not significantly different at half division irrigation and whole quantity irrigation in organic fertilizer input, while increased at half division irrigation in no-treatment of soybean cake fertilizer. Acid phosphatase activity increased at standard level 66% in soybean cake fertilizer, while was not significantly different in no-treatment of soybean cake fertilizer. Spore density of Arbuscular Mycorrhizal Fungi (AMF) in the soil increased with increasing organic fertilizer input at whole quantity irrigation in no-treatment of soybean cake fertilizer, while decreased above the standard level 66% in organic fertilizer input. However, spore density of AMF in the soil was not significantly different in soybean cake fertilizer regardless of input amount of organic fertilizer. Root colonization rate of AMF in red pepper roots was not significant difference at two irrigations regardless of soybean cake input.

Antifungal Activity in Cell-Free Culture Fluid of Pseudomons solanacearum Strains Collected from Severe Provinces in the North of Vietnam.

  • Cuong, Nguyen-Ngoc;Kieu, Le-Nhu;Hang, Dao thi-Thu;Long, Hoang-Hoa;Ha, Nguyen-Hong;Nhung, Vu-Thi;Minh, Le-Thi;Thanh
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.172-173
    • /
    • 1998
  • A research collection of Pseudomons solanacearum bacteria, a pathogen causing ‘bacteria wilt’ disease of more than 265 plant species, represented for northern provinces of Vietnam has recently been established and was saved for examination of antifungal activity in their culture fluids. All strains used in this work have been isolated from infected tomato, potato, and groundnut collected from production fields and they express different levels of virulence on their host plants. Cell-free culture fluids of these strains were tested for antifungal activity (to inhibit growth of mycelium and to destroy germination tube of fungal spores) on a number of fungi that either infect or associate with vegetable crops of Solanaceae family (tomato, potato, pepers...), fruit plants (banana), and even well-known by Vietnamese traditional medicine herbal plants belonging to Trifoliatus, Schefflera, Homalomena and Panax genera (Araliaceae family) of which roots are used as a resource of the herbal material. The antifungal activity was found in nearly all strains tested. Result of study on chitin, CMC, tween 80 and casein degradation abilities of the latter suggested that antifungal activity of positively-found strains may be due to their ability of extracelluar chitinase's excretion that destroy fungal cell wall.

  • PDF

Biological Control Activities of Plant Growth Promoting Rhizobacteria from Organic and Nonorganic Rice Fields against Rice Sheath Blight Pathogen (Rhizoctonia solani Kühn)

  • Harvianti, Yuniar;Kasiamdari, Rina Sri
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.374-383
    • /
    • 2021
  • Rhizoctonia solani is one of the major pathogens that cause sheath blight disease in rice. Sheath blight is one of the most difficult diseases to control. Biological control (with the use of rhizobacteria) is one of the ways to control this disease. Plant Growth Promoting Rhizobacteria (PGPR) is a rhizosphere bacterium that can be used to enhance plant growth. The composition of the rhizobacteria in organic and nonorganic soil is affected by the chemical characteristics of the soil - which influences plant physiology and root exudation patterns. This study aimed to obtain a species of rhizobacteria which shows PGPR activity, from organic and nonorganic rice fields and test their capability to suppress R. solani growth. Out of 23 isolates screened for PGPR activity, the following isolates showed high PGPR activity and were selected for in vitro antagonistic activity testing against R. solani: ISO6, ISO11, ISO15, ISN2, ISN3, and ISN7, The six isolates produced 43,42-75,23 ppm of IAA, possessed phosphorus solubilization capability, and chitinase-producing activity. ISO6 (54.88%) and ISN7 (83.33%) displayed high inhibition capacities against R. solani, in vitro. ISO6 and ISN7 inhibited the growth of R. solani lesions on rice leaves by 89% and 100% (without lesion), respectively, after 7 days of incubation. Analysis of their 16S rRNA sequences revealed that the ISO6 isolate was Citrobacter freundii and ISN7 isolate was Pseudomonas aeruginosa.

Enhancement of Biocontrol Activity of Serratia plymuthica A21 -4 Toward Phytophthora Blight of Pepper by Amendment of Nutritional Condition

  • Shen, Shun-Shan;Kim, Chang-Guk;Park, Chang-Seuk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.96.1-96
    • /
    • 2003
  • Serratia plymuthim A21-4 strongly inhibits the mycelial growth, zoospore formation, and cystospore germination of Phytophthor spp and Pythium species. The bacterial isolate produced antifungal substance and chitinase. The bacteria also enhanced to plant growth remarkably in low nutritional condition. The application of cell suspension of A21-4 to pepper seedlings in greenhouse experiments and soil drenching in farmer's field was proved successfully to control the phythophthora blight of pepper. For the effective control, however, relatively high density of cell number(10$\^$9/cfu/$m\ell$) is required. Density effect was similar in plant growth promoting activity of A21-4. Though this investigation we improved the problem with changes of culture condition of bacteria and some nutritional amendment.

  • PDF

Antifungal, Nematicidal and Antioxidant Activity of the Methanol Extracts Obtained from Medicinal Plants

  • Nguyen, Dang Minh Chanh;Seo, Dong-Jun;Park, Ro-Dong;Jung, Woo-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.199-204
    • /
    • 2013
  • The nematicidal, antifungal and antioxidant activities of methanol extracts from six Vietnamese native medicinal plants were evaluated by various assays in vitro. Of the plant extracts tested, Terminalia nigrovenulosa was found to possess the highest activity when compared to the others. The leaves and bark of T. nigrovenulosa showed strong inhibitory activity against Meloidogyne incognita and Fusarium solani. The DPPH (1,1-Diphenyl-2-picryl-hydrazyl) radical scavenging, reducing power and total antioxidant activities of T. nigrovenulosa bark were higher than that of the remainder plant extracts. Chitinase activity of these plants was also investigated using SDS-PAGE. The results obtained in the present study indicate that T. nigrovenulosa leaf extracts are the greatest potential source as nematicides and fungicides for the control of M. incognita and F. solani. In particularly, T. nigrovenulosa bark extracts could be used as a potential source of commercially viable levels of natural antioxidant.

Biocontrol of Damping-Off(Rhizoctonia solani) in Cucumber by Trichoderma asperellum T-5 (Trichoderma asperellum T-5를 이용한 오이 모잘록병(Rhizoctonia solani)의 생물학적 제어)

  • Ryu, Ji-Yeon;Jin, Rong-De;Kim, Yong-Woong;Lee, Hyang-Burm;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.185-194
    • /
    • 2006
  • A fungal strain of Trichoderma having strong chitinolytic activity was isolated from field soil enriched with crabshell for several years. Based on 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence analysis and morphological characteristics, the fungus was identified as Trichoderma asperellum and named as Trichoderma asperellum T-5 (TaT-5). The fungus released lytic enzymes such as chitinase and ${\beta}$-1, 3-glucanse, and produced six antifungal substances in chitin broth medium. To demonstrate the protective effect of TaT-5 against damping-off in cucumber plant caused by Rhizoctonia solani, TaT-5 culture broth (TA), chitin medium (CM) and distilled water (DW) were applied to each pot at 10 days after sowing, respectively. Then, the homogenized hyphae of R. solani were infected to each pot at 1 week after TaT-5 inoculation. During experimental period, fresh weight of shoot and root in cucumber plant more increased at TA treatment compared to other treatments. PR-proteins (${\beta}$-1, 3-glucanase and chitinase) activities in cucumber leaves markedly increased at CM and DW treatments, but the activity slightly increased and then decreased at TA treatment at 3 days after infection of R. solani. The activity of PR-proteins activities in cucumber roots at all treatments decreased with time where the degree of decrement was more alleviated at TA treatment than CM and DW. These results suggest that the lytic enzymes (chitinase and ${\beta}$-1, 3-glucanse) and antifungal substances produced by TaT-5 can reduce the pathogenic attack by R. solani in cucumber plants.

Evaluation of Strains of Metarhizium anisopliae and Beauveria bassiana against Spodoptera litura on the Basis of Their Virulence, Germination Rate, Conidia Production, Radial Growth and Enzyme Activity

  • Petlamul, Wanida;Prasertsan, Poonsuk
    • Mycobiology
    • /
    • v.40 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • Ten strains of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were evaluated to find the most effective strain for optimization studies. The first criterion tested for strain selection was the mortality (> 50%) of Spodoptera litura larvae after inoculation of the fungus for 4 days. Results on several bioassays revealed that B. bassiana BNBCRC showed the most virulence on mortality S. litura larvae (80% mortality). B. bassiana BNBCRC also showed the highest germination rate (72.22%). However, its conidia yield ($7.2{\times}10^8$ conidia/mL) was lower than those of B. bassiana B 14841 ($8.3{\times}10^8$ conidia/mL) and M. anisopliae M6 ($8.2{\times}10^8$ conidia/mL). The highest accumulative radial growth was obtained from the strain B14841 (37.10 mm/day) while the strain BNBCRC showed moderate radial growth (24.40 mm/day). M. anisopliae M6 possessed the highest protease activity (145.00 mU/mL) while M. anisopliae M8 possessed the highest chitinase activity (20.00 mU/mL) during 96~144 hr cultivation. Amongst these criteria, selection based on virulence and germination rate lead to the selection of B. bassiana BNBCRC. B. bassiana B14841 would be selected if based on growth rate while M. anisopliae M6 and M8 possessed the highest enzyme activities.

Effect of Anti-juvenile Hormone Analogue (AJH) on the Larval Ecdysis of the Silkworm, Bombyx mori L. (항유약호르몬 활성물질이 누에탈피에 미치는 영향)

  • 홍성진;이화준
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.161-168
    • /
    • 1997
  • To clarify the effect of anti-juvenile hormone analogue (AJH) on the larval ecdysis by feeding at early stage of the 4th instar, the total amount of protein and activity of chitinolytic enzymes in the integument of Bombyx mori were analyzed, PAGE pattern of the protein was observed and the morphological changes of integument during molting period were also observed and the morphological changes of integument during molting period were also observed by means of TEM. The total amount of protein was greatly increased in premolting, then reached maximum level just before ecdysis, and rapidly decreased after the larval ecdysis in the control, while in the AJH treatment, increased 12 hr later than the control and its maximum was only 82.6% of the control. Two specific proteins, which were presumed as the protein originated from endocuticle, also appeared 12 hr later than the control and were maintained to 132 hr after AJH treatment from the aspects of the Native- and SDS-PAGE patterns, although those of the control disappeared instantly after ecdysis. Chitinase and $\beta$-N-acetylglucosaminidase activities were also suppressed and delayed by AJH treatment. Furthermore, it was observed that the apolysis took place 12 hr later than the control but new epicuticle was not formed at least until 132 hr after AJH treatment. From these results, it is suggested that the larval molting process of silkworm develops 12 hr later than the control but new epicuticle was not formed at least until 132 hr after AJH treatment. From these results, it is suggested that the larval molting process of silkworm develops 12 hr later than the control by AJH treatment but no further processing takes place just after apolysis.

  • PDF

Characterization of Actinomyces Isolated from Freshwater Sponges in Lake Baikal (바이칼의 담수 스폰지에서 분리한 방선균의 특성 연구)

  • Jung, You-Jung;Joung, Yo-Chan;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • Five strains of Actinomyces were isolated from freshwater sponges, Baikalospongia and Lubomirskia, in Lake Baikal. By 16S rRNA sequencing, isolates were identified as Streptomyces griseoplanus, S. halstedii, S. violascens, S. flavovirens, and S. microflavus. Isolates had different characteristics of growth temperature, carbon utilization, enzyme activity, and cellular fatty acid composition. Optimum growth conditions of isolates were $30-37^{\circ}C$, pH 8-9, and 0-1.5% salt concentrations. Major fatty acid compositions were anteiso-$C_{15:0}$, iso-$C_{15:0}$, and iso-$C_{16:0}$. Strain ATS-BA-19 had DNase and chitinase activities and strain ATS-BA-16 had cellulase and protease activities. Colonies of strain ATS-BA-15 and ATS-BA-19 made inhibition zone of Pseudomonas aeruginosa.

Activity of Early Gene Promoters from a Korean Chlorella Virus Isolate in Transformed Chlorella Algae

  • Jung Heoy-Kyung;Kim Gun-Do;Choi Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.952-960
    • /
    • 2006
  • As a unicellular green alga that possesses many of the metabolic pathways present in higher plants, Chlorelia offers many advantages for expression of heterologous proteins. Since strong and constitutive promoters are necessary for efficient expression in heterologous expression systems, the development of such promoters for use in the Chlorella system was the aim of this study. Proteins encoded by the early genes of algal viruses are expressed before viral replication, probably by the host transcriptional machinery, and the promoters of these genes might be useful for heterologous expression in Chlorella. In this study, putative promoter regions of DNA polymerase, ATP-dependent DNA ligase, and chitinase genes were amplified from eight Korean Chlorella virus isolates by using primer sets designed based on the sequence of the genome of PBCV-1, the prototype of the Phycodnaviridae. These putative promoter regions were found to contain several cis-acting elements for transcription factors, including the TATA, CAAT, NTBBF1, GATA, and CCAAT boxes. The amplified promoter regions were placed into Chlorella transformation vectors containing a green fluorescence protein (GFP) reporter gene and the Sh ble gene for phleomycin resistance. C. vulgaris protoplasts were transformed and then selected with phleomycin. The GFP fluorescence intensities of cells transformed with chitinase, DNA polymerase, and DNA ligase gene promoter-GFP fusion constructs were 101.5, 100.8, and 95.8%, respectively, of that of CaMV 35S-GFP-transformed Chlorella cells. These results demonstrate that these viral promoters are active in transformed Chlorella.