Characterization of Actinomyces Isolated from Freshwater Sponges in Lake Baikal

바이칼의 담수 스폰지에서 분리한 방선균의 특성 연구

  • Jung, You-Jung (Department of Environmental Science, Kangwon National University) ;
  • Joung, Yo-Chan (Department of Environmental Science, Kangwon National University) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kangwon National University)
  • Received : 2011.02.23
  • Accepted : 2011.06.28
  • Published : 2011.06.30

Abstract

Five strains of Actinomyces were isolated from freshwater sponges, Baikalospongia and Lubomirskia, in Lake Baikal. By 16S rRNA sequencing, isolates were identified as Streptomyces griseoplanus, S. halstedii, S. violascens, S. flavovirens, and S. microflavus. Isolates had different characteristics of growth temperature, carbon utilization, enzyme activity, and cellular fatty acid composition. Optimum growth conditions of isolates were $30-37^{\circ}C$, pH 8-9, and 0-1.5% salt concentrations. Major fatty acid compositions were anteiso-$C_{15:0}$, iso-$C_{15:0}$, and iso-$C_{16:0}$. Strain ATS-BA-19 had DNase and chitinase activities and strain ATS-BA-16 had cellulase and protease activities. Colonies of strain ATS-BA-15 and ATS-BA-19 made inhibition zone of Pseudomonas aeruginosa.

러시아의 바이칼에 존재하는 고유종인 Baikalospongia과 Lubomirskia의 sponge로부터 방선균을 분리하였다. 분리된 방선균은 16S rRNA gene 분석 결과, Streptomyces griseoplanus, S. halstedii, S. violascens, S. flavovirens, S. microflavus에 각각 속하였다. 이 방선균들은 온도, 탄소이용, enzyme 활성, fatty acid 조성 등의 실험 결과에서, 각각 서로 다른 특징을 나타냈었다. 분리된 방선균의 배양온도는 30-37, pH는 8-9, 염분농도는 0-1.5에서 가장 잘 자라는 것으로 확인되었다. 주요 cellular fatty acid는 anteiso-$C_{15:0}$, iso-$C_{15:0}$ and iso-$C_{16:0}$로 나타났다. 특히 ATS-BA-19는 DNase와 chitinase 활성을 나타내었고, ATS-BA-16는 cellulase와 protease 활성을 나타내는 것으로 확인되었다. 또 두개의 분리된 방선균에서 그람음성 균주인 Pseudomonas aeruginosa에서 생장을 저해함을 확인하였다.

Keywords

References

  1. Beppu, T. and S. Horinouchi. 1991. Molecular mechanisms in Streptomyces. Planta Medica. 57, 44-47.
  2. Chang, H.B., S.C. Kim, and J.H. Kim. 2006. Chemical characteristics and biological activities of herbimycin A and dihydroherbimycin A produced by soil isolated Streptomyces sp. J. Microbiol. 42, 47-53.
  3. Datta, K., S. Shiha, and P. Chattopadhyay. 2000. Reactive oxygen species in health and disease. Natl. Med. J. India 13, 304-310.
  4. Droscher, I. and J. Waringer. 2007. Abundance and microhabitats of freshwater sponges (Spongillidae) in a Danubean floodplain in Austria. Freshw. Biol. 52, 998-1008. https://doi.org/10.1111/j.1365-2427.2007.01747.x
  5. Hentschel, U., J. Hopke, M. Horn, A.B. Friedrich, M. Wagner, J. Hacker, and B.S. Moore. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431-4440. https://doi.org/10.1128/AEM.68.9.4431-4440.2002
  6. Jones, G.H. 1985. Regulation of phenoxazinone synthase expression in Streptomyces antibiotics. J. Bacteriol. 163, 1215-1221.
  7. Kin, S.L. 2006. Diversity of novel metabolites from marine Actinomycetes. Curr. Opin. Microbiol. 9, 245-251. https://doi.org/10.1016/j.mib.2006.03.004
  8. Manconi, R. and R. Pronzato. 2008. Global diversity of sponges (Porifera: Spongillia) in freshwater. Hydrobiologia 595, 27-33. https://doi.org/10.1007/s10750-007-9000-x
  9. Masuda, Y. 2009. Studies on the taxonomy and distribution of freshwater sponges in Lake Baikal. Prog. Mol. Subcell. Biol. 47, 81-110.
  10. Muller, W.E., G.M. Bohm, V.A. Grebenjuk, A. Skorokhod, I.M. Muller, and V. Gamulin. 2002. Conservation of the positions of metazoan introns from sponges to humans. Gene 295, 299-309. https://doi.org/10.1016/S0378-1119(02)00690-X
  11. Neicolaou, K.C., E.A. Theodorakis, and C.F. Chaibome. 1996. Chemistry and biology of selected natural products. Pure Appl. Chem. 11, 2129-2136.
  12. Parfenova, V.V., I.A. Terkina, T.I. Kostornova, I.G. Nikulina, V.I. Chernykh, and E.A. Maksimova. 2008. Microbial community of freshwater sponges in Lake Baikal. Biol. Bulletin 35, 374-379. https://doi.org/10.1134/S1062359008040079
  13. Piel, J. 2006. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr. Med. Chem. 13, 39-50. https://doi.org/10.2174/092986706775197944
  14. Reiswig, H. 1974. Water transport, respiration and energetics of three tropical marine sponges. J. Exp. Mar. Biol. Ecol. 14, 231-246. https://doi.org/10.1016/0022-0981(74)90005-7
  15. Shigeo, S., E. Nakanishi, K. Furihata, K. Miyamoto, H. Tsujibo, T. Watanabe, Y. Ohnishi, S. Horinouchi, H. Nagasawa, and S. sakuda. 2008. Chitinase inhibitor allosamidin promotes chitinase production of Streptomyces generally. Inter. J. Biol. Macromol. 43, 13-19. https://doi.org/10.1016/j.ijbiomac.2007.09.010
  16. Shin, J. 1991. Mid-and Long-term Reserch Plan on Marine Natural Products. KORDI.
  17. Tanka, Y. and S. Omura. 1990. Metabolism and products of Actinomycetes an introduction. Actinomycetal 4, 13-14. https://doi.org/10.3209/saj.4_13
  18. Vacelet, J. 1975. Etude en microscopie Electronique de l'association entre bacteries et spongiaires du genre Verongia. J. Microsc. Biol. Cell. 23, 271-288.
  19. Wehrl, M. 2001. Masters thesis. Universitat Wurzburg, Wurzburg, Germany.
  20. Weinberg, X.D. 1974. Secondary metabolism: Control by temperature and inorganic phosphate. Dev. Ind. Microbiol. 15, 70-81.
  21. Wiens, M., P. Wrede, V.A. Grebenjuk, O.V. Kaluzhnaya, S.I. Belikov, H.C. Schruder, and W.E. Muller. 2009. Towards a molecular systematics of the Lake Baikal/Lake Tuva sponges. Prog. Mol. Subcell. Biol. 47, 111-144.
  22. Zahner, H. 1985. The secondary metabolism of microorganisms: An inexhaustible source for new products. Pestic. Sci. 16, 424-425.