Browse > Article

Activity of Early Gene Promoters from a Korean Chlorella Virus Isolate in Transformed Chlorella Algae  

Jung Heoy-Kyung (Department of Microbiology, Pukyong National University)
Kim Gun-Do (Department of Microbiology, Pukyong National University)
Choi Tae-Jin (Department of Microbiology, Pukyong National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 952-960 More about this Journal
Abstract
As a unicellular green alga that possesses many of the metabolic pathways present in higher plants, Chlorelia offers many advantages for expression of heterologous proteins. Since strong and constitutive promoters are necessary for efficient expression in heterologous expression systems, the development of such promoters for use in the Chlorella system was the aim of this study. Proteins encoded by the early genes of algal viruses are expressed before viral replication, probably by the host transcriptional machinery, and the promoters of these genes might be useful for heterologous expression in Chlorella. In this study, putative promoter regions of DNA polymerase, ATP-dependent DNA ligase, and chitinase genes were amplified from eight Korean Chlorella virus isolates by using primer sets designed based on the sequence of the genome of PBCV-1, the prototype of the Phycodnaviridae. These putative promoter regions were found to contain several cis-acting elements for transcription factors, including the TATA, CAAT, NTBBF1, GATA, and CCAAT boxes. The amplified promoter regions were placed into Chlorella transformation vectors containing a green fluorescence protein (GFP) reporter gene and the Sh ble gene for phleomycin resistance. C. vulgaris protoplasts were transformed and then selected with phleomycin. The GFP fluorescence intensities of cells transformed with chitinase, DNA polymerase, and DNA ligase gene promoter-GFP fusion constructs were 101.5, 100.8, and 95.8%, respectively, of that of CaMV 35S-GFP-transformed Chlorella cells. These results demonstrate that these viral promoters are active in transformed Chlorella.
Keywords
Chlorella; Chlorella virus; Chlorella transformation; early gene promoter;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Lee, B.-Y., J.-H. Lee, H.-S. Yoon, K. H. Kang, K.-N. Kim, J.-H. Kim, J.-K. Kim, and J.-K. Kim. 2005. Expression of human interleukin-11 and granulocyte-macrophage colonystimulating factor in transgenic plants. J. Microbiol. Biotechnol. 15: 1304-1309   과학기술학회마을
2 Park, S. D., S. N. Lee, I. H. Park, J. S. Choi, W. K. Jeomg, and Y. H. Kim. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicun. J. Microbiol. Biotechnol. 14: 789-795
3 Sanders, P. R., J. A. Winter, A. R. Barnason, S. G. Rogers, and R. T. Fraley. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res. 15: 1543-1558   DOI
4 Van Etten, J. L., D. E. Burbank, A. M. Schuster, and R. H. Meints. 1985. Lytic viruses infecting a Chlorella-like alga. Virology 140: 135-143   DOI   ScienceOn
5 Yamada, T., S. Hiramatsu, P. Songsri, and M. Fujie. 1997. Alternative expression of a chitosanase gene produces two different proteins in cells infected with Chlorella virus CVK2. Virology 230: 361-368   DOI   ScienceOn
6 Grabhrr, R., P. Strasser, and J. L. Van Etten. 1992. The DNA polymerase gene from Chlorella viruses PBCV-1 and NY-2A contains an intron with nuclear splicing sequences. Virology 188: 721-731   DOI   ScienceOn
7 Hiramatsu, S., M. Fujie, S. Usami, K. Sakai, and T. Yamada. 2000. Two catalytic domains of Chlorella virus CVK2 chitinase. J. Biosci. Bioeng. 89: 252-257   DOI   ScienceOn
8 Ho, C. K., J. L. Van Etten, and S. Shuman. 1997. Characterization of an ATP-dependent DNA ligase encoded by Chlorella virus PBCV-1. J. Virol. 71: 1931-1937
9 Kim, D. H., Y. T. Kim, J. J. Cho, J. H. Bae, S. B. Hur, I. Hwang, and T. J. Choi. 2002. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar. Biotechnol. 4: 63-73   DOI
10 Cho, H. H., H. H. Park, J. O. Kim, and T. J. Choi. 2002. Isolation and characterization of Chlorella viruses from freshwater sources in Korea. Mol. Cells 142: 168-176
11 Nishida, K., T. Kawasaki, M. Fujie, S. Usami, and T. Yamada. 1999. Aminoacylation of tRNAs encoded by Chlorella virus CVK2. Virology 263: 220-229   DOI   ScienceOn
12 Van Etten, J. L., R. H. Meints, D. E. Burbank, D. Kuczmarski, D. A. Cuppels, and L. C. Lane. 1981. Isolation and characterization of a virus from the intracellular green alga symbiotic with Hydra viridis. Virology 113: 704-711   DOI   ScienceOn
13 Mitra, A. and D. W. Higgins. 1994. The chlorella virus adenine methyltransferase gene promoter is a strong promoter in plants. Plant Mol. Biol. 26: 85-93   DOI
14 Sun, L., B. Adams, J. R. Gurnon, Y. Ye, and J. L. Van Etten. 1999. Characterization of two chitinase genes and one chitosanase gene encoded by Chlorella virus PBCV-1. Virology 263: 376-387   DOI   ScienceOn
15 Lavrukhin, O. V., J. M. Fortune, T. G. Wood, D. E. Burbank, J. L. Van Etten, N. Osheroff, and R. S. Lloyd. 2000. Topoisomerase II from Chlorella virus PBCV-1. Characterization of the smallest known type II topoisomerase. J. Biol. Chem. 275: 6915-6921   DOI   ScienceOn
16 Schuster, A. M., L. Gilton, D. E. Burbank, and J. L. Van Etten. 1996. Infection of Chlorella-like algae with the virus PBCV-1: Translational studies. Virology 148: 181-189   DOI   ScienceOn
17 Xia, Y. and J. L. Van Etten. 1986. DNA methyltransferase induced by PBCV-1 virus infection of a Chlorella-like green alga. Mol. Cell. Biol. 6: 1440-1445   DOI
18 Wissenbach, M., B. Uberlacker, F. Vogt, D. Becker, F. Salamini, and W. Rohde. 1993. Myb genes from Hordeum vulgare: Tissue specific expression of chimeric Myb promoter Gus genes in transgenic tobacco. Plant J. 4: 411-422   DOI   ScienceOn
19 Van Etten, J. L., D. E. Burbank, D. Kuczmarski, and R. H. Meints. 1983. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 219: 994-996   DOI   ScienceOn
20 Baumann, K., A. De Paolis, P. Costamtino, and G. Gualberti. 1998. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11: 323-334   DOI
21 Tyagi, A. K. 2001. Plant genes and their expression. Plant Molec. Biol. 80: 161-169
22 Zhang, Y., M. Nelson, J. Nietfeldt, Y. Xia, D. E. Burbank, S. Ropp, and J. L. Van Etten. 1998. Chlorella virus NY-2A encodes at least twelve DNA endonuclease/methyltransferase genes. Virology 240: 336-375
23 Sanger, N., S. Daubect, and R. M. Goodman. 1990. Characteristics of a strong promoter from figwort mosaic virus: Comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol. Biol. 14: 433-443   DOI
24 Mitra, A., D. W. Higgins, and N. J. Rohe. 1994. A Chlorella virus gene promoter functions as a strong promoter both in plants and bacteria. Biochem. Biophys. Res. Comm. 204: 187-194   DOI   ScienceOn
25 Kawasaki, T., M. Tanaka, K. Nishida, and T. Yamada. 2001. Regulatory mechanism of the gene expression during chlorovirus infection cycle. Nucleic Acid Res. Suppl. 1: 67-68   DOI
26 Sandhu, J. S., C. I. Webster, and J. C. Gray. 1998. A/T-rich sequences act as quantitative enhancers of gene expression in transgenic tobacco and potato plants. Plant Mol. Biol. 37: 885-896   DOI   ScienceOn
27 Van Etten, J. L. 1995. Giant Chlorella viruses. Mol. Cells 5: 99-106
28 Zhang, Y., I. Calin-Jageman, J. R. Gurnon, T. J. Choi, B. Adams, A. W. Nicholson, and J. L. Van Etten. 2003. Characterization of a Chlorella virus PBCV-1 encoded ribonuclease III. Virology 317: 73-83   DOI   ScienceOn
29 Eom, H. S., S. H. Park, C. G. Lee, and E. S. Jin. 2005. Gene expression profiling of eukaryotic microalga, Haematococcus pluvialis. J. Microbial. Biotechnol. 15: 1060-1066   과학기술학회마을
30 Ying, C., W. Yiqin, S. Yongru, Z. Liming, and L. Wenbin. 2001. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr. Genet. 36: 365-370
31 Mergulhao, F. J. M., Gabriel A. Monteiro, Joaquim M. S. Cabral, and M. Angel Taipa. 2004. Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli. J. Microbiol. Biotechnol. 14: 1-14
32 Kawasaki, T., K. Nishida, M. Fujie, S. Usami, and T. Yamada. 2000. Characterization of immediate early genes expressed in chlorovirus infection. Nucleic Acids Symp. Ser. 44: 161-162
33 Van Etten, J. L., M. V. Graves, D. G. Muller, W. Boland, and N. Delaroque. 2002. Phycodnaviridae - large DNA algal viruses. Arch. Virol. 147: 1479-1516   DOI   ScienceOn
34 Odell, J. T., F. Nagy, and N. H. Chua. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812   DOI   ScienceOn
35 Hiramatsu, S., M. Ishihara, M. Fujle, S. Usami, and T. Yamada. 1999. Expression of a chitinase gene and lysis of the host cell wall during chlorella virus CVK2 infection. Virology 260: 308-315   DOI   ScienceOn
36 Van Etten, J. L. 2003. Unusual life style of giant Chlorella viruses. Annu. Rev. Genet. 37: 153-195   DOI   ScienceOn
37 Graves, M. V., D. E. Burbank, R. Roth, J. Heuser, P. L. DeAngelis, and J. L. Van Etten. 1999. Hyaluronan synthesis in virus PBCV-1 infected Chlorella-like green algae. Virology 257: 15-23   DOI   ScienceOn
38 Rothstein, S. J., K. N. Lahners, R. J. Lotstein, N. B. Carozzi, S. M. Jayne, and D. A. Rice. 1987. Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation. Gene 53: 154-161
39 Chen, F. and C. A. Suttle. 1995. Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl. Environ. Microbiol. 61: 1274-1278
40 Kawata, T., A. Nakatsuka, T. Tabata, and M. Iwabuchi. 1989. Function of the hexameric sequence in the cauliflower mosaic virus 35S RNA promoter region. Biochem. Biophys. Res. Commun. 164: 387-393   DOI   ScienceOn
41 Sorokin, C. and R. W. Krauss. 1958. The effect of light intensity on the growth rate of green algae. Plant Physiology 33: 109-113   DOI   ScienceOn
42 Van Etten, J. L., D. E. Burbank, Y. Xia, and R. H. Meints. 1983. Growth cycle of a virus, PBCV-1, that infects Chlorellalike algae. Virology 126: 117-125   DOI   ScienceOn
43 Kawasaki, T., M. Tanaka, M. Fujie, S. Usami, and T. Yamada. 2004. Immediated early genes expressed in chlorovirus infection. Virology 318: 214-223   DOI   ScienceOn
44 Landstein, D., M. Mincberg, S. Arad, and J. Tal. 1996. An early gene of the Chlorella virus PBCV-1 encodes a functional aspartate transcarbamylase. Virology 221: 151-158   DOI   ScienceOn
45 Van Etten, J. L. and R. H. Meints. 1999. Giant viruses infecting algae. Annu. Rev. Microbiol. 53: 447-494   DOI   ScienceOn
46 Van Etten, J. L., C. H. Van Etten, J. K. Johnson, and D. E. Burbank. 1985. A survey for viruses from fresh water that infect a eukaryotic Chlorella-like green alga. Appl. Environ. Microbiol. 49: 1326-1328
47 Guillard, R. R. L. and J. H. Ryther. 1962. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J. Microbiol. 3: 229-239
48 Liu, Z. Z., J. L. Wang, X. Huang, W. H. Xu, Z. M. Liu, and R. X. Fang. 2003. The promoter of a rice glycine-rich protein gene, Osgrp-2, confers vascular-specific expression in transgenic plants. Planta 216: 824-833