Browse > Article
http://dx.doi.org/10.5941/MYCO.2012.40.2.111

Evaluation of Strains of Metarhizium anisopliae and Beauveria bassiana against Spodoptera litura on the Basis of Their Virulence, Germination Rate, Conidia Production, Radial Growth and Enzyme Activity  

Petlamul, Wanida (Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University)
Prasertsan, Poonsuk (Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University)
Publication Information
Mycobiology / v.40, no.2, 2012 , pp. 111-116 More about this Journal
Abstract
Ten strains of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were evaluated to find the most effective strain for optimization studies. The first criterion tested for strain selection was the mortality (> 50%) of Spodoptera litura larvae after inoculation of the fungus for 4 days. Results on several bioassays revealed that B. bassiana BNBCRC showed the most virulence on mortality S. litura larvae (80% mortality). B. bassiana BNBCRC also showed the highest germination rate (72.22%). However, its conidia yield ($7.2{\times}10^8$ conidia/mL) was lower than those of B. bassiana B 14841 ($8.3{\times}10^8$ conidia/mL) and M. anisopliae M6 ($8.2{\times}10^8$ conidia/mL). The highest accumulative radial growth was obtained from the strain B14841 (37.10 mm/day) while the strain BNBCRC showed moderate radial growth (24.40 mm/day). M. anisopliae M6 possessed the highest protease activity (145.00 mU/mL) while M. anisopliae M8 possessed the highest chitinase activity (20.00 mU/mL) during 96~144 hr cultivation. Amongst these criteria, selection based on virulence and germination rate lead to the selection of B. bassiana BNBCRC. B. bassiana B14841 would be selected if based on growth rate while M. anisopliae M6 and M8 possessed the highest enzyme activities.
Keywords
Beauveria bassiana; Enzyme activities; Germination rate; Metarhizium anisopliae; Radial growth; Spodoptera litura; Virulence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rao GV, Wightman JA, Rao DV. World review of the natural enemies and diseases of Spodoptera litura (F.) (Lepidoptera: Noctuidae). Insect Sci Appl 1993;14:273-84.
2 Wada K, Manakata K. Naturally occurring insect control cheive measurement of heptachlor in the soil and certain products of animal and plant orgin.ang. J Agric Food Chem 1968;16:471-4.   DOI
3 Honda Y. Current status of integrated pest control Shokubutsu Boeki. Plant Prot 2000;54:213-6.
4 Faria M, Wraight SP. Biological control of Bemisia tabaci with fungi. Crop Prot 2001;20:767-78.   DOI   ScienceOn
5 Anand R, Prasad B, Tiwary BN. Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl 2009;54:85-92.   DOI   ScienceOn
6 Cloyd RA. The entomopathogenic fungus Metarhizium anisopliae. Midwest Biological Control News Vol. 6 [Internet]. Madison (WI): University of Wisconsin-Masdison; 2008 [cited 2012 May 7]. Available from: http://www.entomology. wisc.edu/mbcn/kyf607.html.
7 St. Leger RJ, Charnley AK, Cooper RM. Cuticle-degrading enzymes of entomopathogenic fungi: mechanisms of interaction between pathogen enzymes and insect cuticle. J Invertebr Pathol 1986;47:295-302.   DOI
8 Soundarapandian P, Chandra R. Mass production of entomopathogenic fungus Metarhizium anisopliae (Deuteromycota; Hyphomycetes) in the laboratory. Res J Microbiol 2007;2:690-5.   DOI
9 Pham TA, Kim JJ, Kim SG, Kim K. Production of blastospore of entomopathogenic Beauveria bassiana in a submerged batch culture. Mycobiology 2009;37:218-24.   DOI   ScienceOn
10 Takatsuka J, Okuno S, Nakai M, Kunimi Y. Genetic and biological comparisons of ten geographic isolates of a nucleopolyhedrovirus that infects Spodoptera litura (Lepidoptera: Noctuidae). Biol Control 2003;26:32-9.   DOI   ScienceOn
11 Park SH, Yu YS, Park JS, Choo HY, Bae SD, Name MH. Biological control of tobacco cutworm, Spodoptera litura Fabricius with entomopathogenic nematodes. Biotechnol Bioprocess Eng 2001;6:139-43.   DOI   ScienceOn
12 Lezama-Gutierrez R, Trujillo-de La Luz A, Molina-Ochoa J, Rebolledo-Dominguez O, Pescador AR, Lopez-Edwards M, Aluja M. Virulence of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) on Anastrepha ludens (Diptera: Tephritidae): labolatory and field trials. J Econ Entomol 2000;93:1080-4.   DOI   ScienceOn
13 Thaochan N, Chinajariyawong A. Spore germination and mycelia growth of Metarhizium anisopliae (Metsch.) Sorokin effected by different temperature regimes. Agric Sci J 2008; 39:21-5.
14 Yanai K, Takaya N, Kojima N, Horiuchi H, Ohta A, Takagi M. Purification of two chitinases from Rhizopus oligosporus and isolation and sequencing of the encoding genes. J Bacteriol 1992;174:7398-406.   DOI
15 Yeo H, Pell JK, Alderson PG, Clark SJ, Pye BJ. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Manag Sci 2003;59:156-65.   DOI   ScienceOn
16 Bhagya Lakshmi S, Gurvinder Kuar S, Padmini Palem PC. Isolation and purification of cuticle degradating extracellular proteases from entomopathogenic fungal species Beauveria bassiana and Metarhizium anisopliae. Int J Appl Biol Pharmaceut Technol 2010;1:1150-6.
17 Somogyi M. Notes on sugar determination. J Biol Chem 1952;195:19-23.
18 Swe TM, Nway WN, Thu MK, Han T. Biocontrol potential of entomopathogenic Fungus, Metarhizium anisopliae against Spodoptera Litura. In: The Third GMSARN International Conference on Sustainable Development: Issues and Prospects for the Greater Mekong Subregion; 2008 Nov 12-14; Kunming, China.
19 Amer MM, El-Sayed TI, Bakheit HK, Moustafa SA, El- Sayed YA. Pathogenicity and genetic variability of five entomopathogenic fungi against Spodoptera littoralis. Res J Agric Biol Sci 2008;4:354-67.
20 Leland JE, Mullins DE, Vaughan LJ, Warren HL. Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum. Part2: effects of media osmolality on cell wall characteristics, carbohydrate concentrations, drying stability, and pathogenicity. Biocontrol Sci Technol 2005;15:393-409.   DOI   ScienceOn
21 Shah FA, Wang CS, Butt TM. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 2005;251:259-66.   DOI   ScienceOn
22 Altomare C, Norvell WA, Bjorkman T, Harman GE. Solubilization of phosphates and micronutrients by the plantgrowth- promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 1999;65:2926-33.
23 Zhang W, Sulz M, Bailey KL. Growth and spore production of Plectosporium tabacinum. Can J Bot 2001;79:1297-306.
24 Zurek L, Watson DW, Schal C. Synergism between Metarhizium anisopliae (Deuteromycota: Hyphomycetes) and boric acid against the German cockroach (Dictyoptera: Blattellidae). Biol Control 2002;23:296-302.   DOI   ScienceOn
25 Hallsworth JE, Magan N. Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 1996;62:2435-42.
26 Sabbour MM, Ragei M, Abd-El Rahman A. Effect of some ecological factors on the growth of Beauveria bassiana and Paecilomyces fumosoroseus against Corn Borers. Aust J Basic Appl Sci 2011;5:228-35.
27 Jarrold SL, Moore D, Potter U, Charnley AK. The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycol Res 2007; 11(Pt 2):240-9.
28 Dhar P, Kaur G. Production of cuticle-degrading proteases by Beauveria bassiana and their induction in different media. Afr J Biochem Res 2010;3:65-72.
29 Nahar P, Ghormade V, Deshpande MV. The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J Invertbr Pathol 2004; 85:80-8.   DOI   ScienceOn
30 Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V. Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 2000;18:305-12.   DOI   ScienceOn