• Title/Summary/Keyword: chiral styrene oxide

Search Result 19, Processing Time 0.032 seconds

Development of Asymmetric Resolution System for the Production of Chiral Styrene Oxide by Microbial Epoxide Hydrolase (미생물 유래의 Epoxide Hydrolase를 이용한 Chiral Styrene Oxide 생산용 비대칭 광학분할시스템개발)

  • 이지원;윤여준;이은열
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.584-588
    • /
    • 2002
  • Asymmetric enantioselective resolution system using epoxide hydrolase activity of Aspergillus niger LK was developed and operated for the production of optically pure styrene oxide. Two-phase hollow-fiber reactor system was employed for the enhanced solubility of racemic styrene oxide in organic phase and protection of epoxide hydrolase activity in aqueous phase. For the removal of phenyl-1,2-ethandiol, the inhibitor of epoxide hydrolase, cascade hollow-fiber reactor system was also developed. Chiral (S)-styrene oxide (39 mM in dodecane) could be asymmetrically resolved with high enantiopurity (> 99% ee) using these reactor system.

Production of Chiral Styrene Oxide by Microbial Enantioselective Hydrolysis Reaction (미생물 입체선택성 가수분해 반응을 이용한 광학활성 Styrene Oxide 생산)

  • 윤성준;이은열
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.630-634
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis, and various biological methods have been investigated for their production. In this work, the enantioselective resolution of racemic styrene oxide was investigated using Aspergillus niger sp. for the production of optically pure (S)-styrene oxide. The enantioselectivity and initial hydrolysis rates of the racemic substrate were highly dependent of the pH, temperature, and the volume ratio of cosolvent. Experimental sets of pH, temperature, and the volume ratio of cosolvent were investigated using a central composite experimental design, and reaction conditions were optimized by response surface analysis. The optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4%(v/v), respectively, and optically pure (S)-styrene oxide (>99% ee) was obtained at 35% yield using this microbial enantioselective hydrolysis reaction.

  • PDF

반응표면 분석법을 이용한 광학활성 styrene oxide의 생산조건 최적화

  • Lee, Eun-Yeol;Yun, Seong-Jun;Bae, Hyeon-Cheol;Gang, Jin-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.593-596
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis and various biological methods have been investigated for the production of chiral epoxides. In this work, enantioselective resolution of racemic styrene oxide was investigated using an isolated Aspergillus niger sp. for the production of optically pure (S) -styrene oxide. The enantioselectivity and initial hydrolysis rates of racemic substrate were highly dependent on the pH, temperature, and the volume ratio of cosolvent. The experimental sets of pH, temperature, and the volume ratio of cosolvent were designed using central composite experimental design, and the reaction conditions were optimized using response surface analysis. The optimal conditions of pH, temperature, and the volume ration of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4 %(v/v), respectively, and optically pure (S)-styrene oxide (> 99% ee) could be obtained with the 35 % yield by microbial enantioselective hydrolysis reaction.

  • PDF

Enantioselective Hydrolysis of Racemic Styrene Oxide by Epoxide Hydrolase of Rhodosporidium kratochvilovae SYU-08

  • Lee, Ji-Won;Lee, Eun-Jung;Yoo, Seung-Sik;Park, Sung-Hoon;Kim, Hee-Sook;Lee, Eun-Yeol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.306-308
    • /
    • 2003
  • Enantioselective hydrolysis for the production of chiral styrene oxide was investigated using the epoxide hydrolase activity of a newly isolated Rhodosporidium kratochvilovae SYU-08. The effects of reaction parameters - buffer type, pH, temperature, initial substrate concentrations, phenyl-1,2-ethanediol concentrations on hydrolysis rate, and enantioselectivity - were analyzed. Optically active (S)-styrene oxide with an enantiomeric excess higher than 99 % was obtained from its racemate. with a yield of 38 % (theoretically 50% maximum yield) from an initial concentration of 80 mM.

Bioinformatics based Identification and Characterization of Epoxide Hydrolase of Gordonia westfalica for the Production of Chiral Epoxides (Bioinformatics를 활용한 토양미생물인 Gordonia westfalica Epoxide Hydrolase 생촉매 개발 및 Chiral Epoxides 제조 특성 분석)

  • Lee Soo Jung;Lee Eun Jung;Kim Hee Sook;Lee Eun Yeol
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.311-316
    • /
    • 2005
  • Epoxide hydrolases (EHs) are versatile biocatalysts for the preparation of chiral epoxides by enantioselective hydrolysis from racemic epoxides. Various microorganisms were identified to possess a EH activity by multiple sequence alignment and analysis of conserved domain sequence from genomic and megaplasmid sequence data. We successfully isolated Gordonia westfalica possessing EH activity from various microbial strains from culture type collections. G. westfalica exhibited (R)-styrene oxide preferred enantioselective hydrolysis activity. Chiral (S)-styrene oxide with high optical purity $(>\;99\%)\;ee)$ and yield of $36.5\%$ was obtained from its racemate using whole-cell of G. westfalica.

Optimization of Epoxide Hydrolase-Catalyzed Enantioselective Hydrolysis of Racemic Styrene Oxide (Rhodotorula sp. CL-83 유래의 에폭사이드 가수분해효소를 이용한 라세믹 Styrene Oxide 입체특이성 가수분해 조건 최적화)

  • 이은열
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.765-768
    • /
    • 2002
  • Enantioselective hydrolysis of racemic styrene oxide by Rhodotorula sp. CL-82 was investigated. Reaction conditions including pH, temperature, and volume ratio of organic cosolvent were optimized using response surface methodology, and the optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.64, $33.26^{\circ}C$, and 3.09 %(v/v), respectively. Chiral (S)-phenyl oxirane could be obtained with high enantiomeric purity (ee > 99%) and 20% yield (theoretical yield = 50%) at the optimal rendition.

광학활성 Styrene Oxide 제조를 위한 고기능성 유전자 재조합 Epoxide Hydrolase 생촉매 개발

  • Lee, Su-Jeong;Lee, Ji-Won;Lee, Eun-Jeong;Kim, Hui-Suk;Lee, Eun-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.435-438
    • /
    • 2003
  • Epoxide hydrolase(EH) catalyze the enantioselective hydrolysis of racemic epoxides to corresponding diols. A recombinant Pichia pastoris with EH from Rhodotorula glutinis has been constructed by reverse transcriptase-polymerase chain reaction(RT-PCR). The recombinant biocatalyst enantioselectively hydrolyze (R)-styrene oxide faster than (S)-enantiomer. The catalytic activity of recombinant biocatalyst was 7-fold higher than that of wild-type strain. The recombinant EH biocatalyst can be used for kinetic resolution for the production of enantiopure styrene oxide.

  • PDF

Characterization of Styrene Catabolic Genes of Pseudomonas putida SN1 and Construction of a Recombinant Escherichia coli Containing Styrene Monooxygenase Gene for the Production of (S)-Styrene Oxide

  • Park Mi-So;Bae Jong-Won;Han Ju-Hee;Lee Eun-Yeol;Lee Sun-Gu;Park Sung-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1032-1040
    • /
    • 2006
  • Some Pseudomonas species can grow on styrene as a sole carbon and energy source. From the new isolate Pseudomonas putida SN1, the genes for styrene catabolism were cloned and sequenced. They were composed of four structural genes for styrene monooxygenase (styA and styB), styrene oxide isomerase (styC), and phenylacetaldehyde dehydrogenase (styD), along with two genes for the regulatory system (styS and styR). All the genes showed high DNA sequence (91% to 99%) and amino acid sequence (94% to 100%) similarities with the corresponding genes of the previously reported styrene-degrading Pseudomonas strains. A recombinant Escherichia coli to contain the styrene monooxygenase from the SN1 was constructed under the control of the T7 promoter for the production of enantiopure (S)-styrene oxide, which is an important chiral building block in organic synthesis. The recombinant E. coli could convert styrene into an enantiopure (S)-styrene oxide (ee >99%) when induced by IPTG The maximum activity was observed as 140 U/g cell, when induced with 1 mM IPTG at $15^{\circ}C$.

Biosynthesis of (R)-phenyl-1,2-ethanediol by using Single Recombinant Epoxide Hydrolase from Caulobacter Crescentus (재조합 epoxide hydrolase를 단일 생촉매로 사용한 광학수렴 가수분해반응을 통한 광학활성 (R)-phenyl-1,2-ethanediol 생합성)

  • Lee, Ok Kyung;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.279-283
    • /
    • 2007
  • Epoxide hydrolase (EH) gene of Caulobacter crescentus was cloned by PCR and expressed in Escherichia coli. The C. crescentus EH (CcEH) primarily attacked at the benzylic carbon of (S)-styrene oxide, while the CcEH preferentially attacked at the terminal carbon of (R)-styrene oxide, thus leading to the formation of (R)-phenyl-1,2-ethanediol as the main product. (R)-phenyl-1,2-ethanediol was obtained with 85% enantiomeric excess and yield of 69% from racemic styrene oxide via enantioconvergent hydrolysis by using recombinant CcEH as the single biocatalyst.