Browse > Article

Characterization of Styrene Catabolic Genes of Pseudomonas putida SN1 and Construction of a Recombinant Escherichia coli Containing Styrene Monooxygenase Gene for the Production of (S)-Styrene Oxide  

Park Mi-So (Department of Chemical and Biochemical Engineering,Pusan National University)
Bae Jong-Won (Department of Chemical and Biochemical Engineering,Pusan National University)
Han Ju-Hee (Department of Chemical and Biochemical Engineering,Pusan National University)
Lee Eun-Yeol (Institute for Environmental Technology and Industry, Pusan National University)
Lee Sun-Gu (Department of Chemical and Biochemical Engineering,Pusan National University)
Park Sung-Hoon (Department of Chemical and Biochemical Engineering,Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.7, 2006 , pp. 1032-1040 More about this Journal
Abstract
Some Pseudomonas species can grow on styrene as a sole carbon and energy source. From the new isolate Pseudomonas putida SN1, the genes for styrene catabolism were cloned and sequenced. They were composed of four structural genes for styrene monooxygenase (styA and styB), styrene oxide isomerase (styC), and phenylacetaldehyde dehydrogenase (styD), along with two genes for the regulatory system (styS and styR). All the genes showed high DNA sequence (91% to 99%) and amino acid sequence (94% to 100%) similarities with the corresponding genes of the previously reported styrene-degrading Pseudomonas strains. A recombinant Escherichia coli to contain the styrene monooxygenase from the SN1 was constructed under the control of the T7 promoter for the production of enantiopure (S)-styrene oxide, which is an important chiral building block in organic synthesis. The recombinant E. coli could convert styrene into an enantiopure (S)-styrene oxide (ee >99%) when induced by IPTG The maximum activity was observed as 140 U/g cell, when induced with 1 mM IPTG at $15^{\circ}C$.
Keywords
(S)-styrene oxide; styrene monooxygenase; whole-cell biocatalyst; Pseudomonas putida SN1; induction condition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Besse, P. and H. Veschambre. 1994. Chemical and biological synthesis of chiral epoxides, Tetrahedron 50: 8885-8927   DOI   ScienceOn
2 Panke, S., V. de Lorenzo, A. Kaiser, B. Witholt, and M. G. Wubbolts. 1999. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous twoliquid-phase applications. Appl. Environ. Microbiol. 65: 5619-5623
3 Park, N. S., J. S. Myeong, H.-J. Park, K. Han, S.-N. Kim, and E.-S. Kim. 2005. Characterization and culture optimization of regiospecific cyclosporine hydroxylation in rare Actinomycetes species. J. Microbiol. Biotechnol. 15: 188- 191   과학기술학회마을
4 Swaving, J. and J. A. M. de Bont. 1998. Microbial transformation of epoxide. Enzyme Microb. Technol. 22: 19-26   DOI   ScienceOn
5 Velasco, A., S. Alonso, J. L. Garcia, J. Perera, and E. Diaz. 1998. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J. Bacteriol. 180: 1063-1071
6 Wubbolts, M. G., P. Reuvekamp, and B. Witholt. 1994. Efficient production of optically active styrene epoxidation in two-liquid phase cultures. Enzyme Microb. Technol. 16: 608-615   DOI   ScienceOn
7 Kim, J., H. W. Ryu, D. J. Jung, T. H. Lee, and K.-S. Cho. 2005. Styrene degradation in a polyurethane biofilter inoculated with Pseudomonas sp. IS-3. J. Microbiol. Biotechnol. 15: 1207-1213   과학기술학회마을
8 Munthali, M. T., K. N. Timmis, and E. Diaz. 1996. Restricting the dispersal of recombinant DNA: Design of a contained biological catalyst. Bio/Technology 14: 189-191   DOI
9 Choi, K. O., S. H. Song, and Y. J. Yoo. 2004. Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnol. Bioprocess Eng. 9: 147-150   DOI   ScienceOn
10 Duetz, W. A., J. B. Beilen, and B. Witholt. 2001. Using proteins in their natural environment: Potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12: 419-425   DOI   ScienceOn
11 Neidhardt, C. F., L. J. Ingraham, and M. Schaechter. 1990. Physiology of the Bacterial Cell: A Molecular Approach, pp. 4. Sinauer Associates, Inc. Sunderland, Massachusetts, U.S.A
12 Beltrametti, F., A. M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro. 1997. Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 63: 2232-2239
13 Harayama S., M. Kok, and E. L. Neidle. 1992. Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46: 565-601   DOI   ScienceOn
14 Swartz, J. R. 2001. Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12: 195-201   DOI   ScienceOn
15 Otto, K., K. Hofstetter, M. Rothlisberger, B. Witholt, and A. Schmid. 2004. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavindiffusible monooxygenase. J. Bacteriol. 186: 5292-5302   DOI   ScienceOn
16 Sambrook, J., E. F. Fritsch, and T. Maniatis. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
17 Panke, S., A. Meyer, C. M. Huber, B. Witholt, and M. G. Wubbolts. 1999. An alkane-responsive expression system for the production of fine chemicals. Appl. Environ. Microbiol. 65: 2324-2332
18 Park, M. S., J. H. Han, S. S. Yoo, E. Y. Lee, S. G. Lee, and S. Park. 2005. Degradation of styrene by a new isolate Pseudomonas putida SN1. Kor. J. Chem. Eng. 22: 418-424   DOI
19 O'Leary, N. D., K. E. O'Conner, W. Duetz, and A. D. W. Dobson. 2001. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147: 973-979   DOI
20 Marconi, A. M., F. Beltrametti, G. Bestetti, F. Solinas, M. Ruzzi, E. Galli, and E. Zennaro. 1996. Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 62: 121-127
21 Van Beilen, J. B., M. G. Wubbolts, and B. Witholt. 1994. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5: 161-174   DOI
22 Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts. 1998. Towards a biocatalyst for (S)-styrene oxide production: Characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl. Environ. Microbiol. 64: 2032-2043
23 Lim, H. K., S. U. Lee, S. I. Chung, K. H. Jung, and J. H. Seo. 2004. Induction of the T7 promoter using lactose of production of recombinant plasminogen kringle 1-3 in Escherichia coli. J. Microbiol. Biotechnol. 14: 225-230
24 Panke, S., M. G. Wubbolts, A. Schmid, and B. Witholt. 2000. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69: 91-100   DOI   ScienceOn
25 Banryx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421   DOI   ScienceOn
26 Holland, H. L. and H. K Weber. 2000. Enzymatic hydroxylation reactions. Curr. Opin. Biotechnol. 11: 547-553   DOI   ScienceOn
27 Nothe, C. and S. Hartmans. 1994. Formation and degradation of styrene oxide stereoisomers by different microorganisms. Biocatalysis 10: 219-225   DOI
28 Lee, N., J. M. Lee, K. H. Min, and D. Y. Kwon. 2003. Purification and characterization of 2,3-dihydroxybiphenyl 1,2-dioxygenase from Comamonas sp. SMN4. J. Microbiol. Biotechnol. 13: 487-494