• Title/Summary/Keyword: chip design

Search Result 2,172, Processing Time 0.025 seconds

Design of MLC chip quadrature hybrid for 2 GHz band mobile communications (2 GHz대 이동 통신용 MLC 칩 90$^{\circ}$ 하이브리드 설계)

  • 심성훈;강종윤;윤석진;신현용;윤영중;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.115-118
    • /
    • 2002
  • This paper presents the design method and performance characteristics of a chip-type quadrature hybrid using LTCC-MLC technology. The design method for a chip-type quadrature hybrid is based on lumped element equivalent circuit of quarter-wave transformer. The chip-type quadrature hybrid was miniaturized to a greater extent using multilayer structure and lumped element. The proposed design method can also reduce the undesirable parasitic effects of the chip-type quadrature hybrid. The proposed chip-type quadrature hybrid was designed and fabricated using the proposed design method and the equivalent circuit model of a quarter-wave transformer. Fabrication and measurement of designed chip-type quadrature hybrid show much smaller size than a conventional distributed quadrature hybrid and a good agreement with simulated results.

  • PDF

Performance Analysis for MPEG-4 Video Codec Based on On-Chip Network

  • Chang, June-Young;Kim, Won-Jong;Bae, Young-Hwan;Han, Jin-Ho;Cho, Han-Jin;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.497-503
    • /
    • 2005
  • In this paper, we present a performance analysis for an MPEG-4 video codec based on the on-chip network communication architecture. The existing on-chip buses of system-on-a-chip (SoC) have some limitation on data traffic bandwidth since a large number of silicon IPs share the bus. An on-chip network is introduced to solve the problem of on-chip buses, in which the concept of a computer network is applied to the communication architecture of SoC. We compared the performance of the MPEG-4 video codec based on the on-chip network and Advanced Micro-controller Bus Architecture (AMBA) on-chip bus. Experimental results show that the performance of the MPEG-4 video codec based on the on-chip network is improved over 50% compared to the design based on a multi-layer AMBA bus.

  • PDF

Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package (이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계)

  • Nam, Hyun-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

A Multi-Level Knowledge-Based Design System for Semiconductor Chip Encapsulation

  • Huh, Y.J.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • Semiconductor chip encapsulation process is employed to protect the chip and to achieve optimal performance of the chip. Expert decision-making to obtain the appropriate package design or process conditions with high yields and high productivity is quite difficult. In this paper, an expert system for semiconductor chip encapsulation has been constructed which combines a knowledge-based system with CAE software.

  • PDF

Prediction of Chip Forms using Neural Network and Experimental Design Method (신경회로망과 실험계획법을 이용한 칩형상 예측)

  • 한성종;최진필;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.64-70
    • /
    • 2003
  • This paper suggests a systematic methodology to predict chip forms using the experimental design technique and the neural network. Significant factors determined with ANOVA analysis are used as input variables of the neural network back-propagation algorithm. It has been shown that cutting conditions and cutting tool shapes have distinct effects on the chip forms, so chip breaking. Cutting tools are represented using the Z-map method, which differs from existing methods using some chip breaker parameters. After training the neural network with selected input variables, chip forms are predicted and compared with original chip forms obtained from experiments under same input conditions, showing that chip forms are same at all conditions. To verify the suggested model, one tool not used in training the model is chosen and input to the model. Under various cutting conditions, predicted chip forms agree well with those obtained from cutting experiments. The suggested method could reduce the cost and time significantly in designing cutting tools as well as replacing the“trial-and-error”design method.

Dynamic Reliability of Board Level by Changing the Design Parameters of Flip Chips (플립칩의 매개변수 변화에 따른 보드레벨의 동적신뢰성평가)

  • Kim, Seong-Keol;Lim, Eun-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.559-563
    • /
    • 2011
  • Drop impact reliability assessment of solder joints on the flip chip is one of the critical issues for micro system packaging. Our previous researches have been showing that new solder ball compositions of Sn-3.0Ag-0.5Cu has better mechanical reliability than Sn-1.0Ag-0.5Cu. In this paper, dynamic reliability analysis using Finite Element Analysis (FEA) is carried out to assess the factors affecting flip chip in drop simulation. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard including 15 chips, solder balls and PCB are modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. It is found that larger chip size, smaller chip array, smaller ball diameter, larger pitch, and larger chip thickness have bad effect on maximum yield stress and strain at solder ball of each chip.

A Study on Optimal Process Conditions for Chip Encapsulation (반도체 칩 캡슐화 공정의 최적조건에 관한 연구)

  • 허용정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.477-480
    • /
    • 1995
  • Dccisions of optimal filling conditions for the chip encapsulation have been done primarily by an ad hoc use of expertise accumulated over the years because the chip encapsulation process is quite complicated. The current CAE systems do not provide mold designers with necessary knowledge of the chip encapsulation for the successful design of optimal filling except flow simulation capability. There have been no attempts to solve the optimal filling problem in the process of the chip encapsulation. In this paper, we have constructed an design system for optimal filling to avoid short shot in the chip encapsulation process which combines an optimization methodology with CAE software.

  • PDF

Thermal Design of PCR Chip for LOC (랩온어칩을 위한 중합효소 연쇄반응 칩의 열설계)

  • Kim, Deok-Jong;Kim, Jae-Yun;Park, Sang-Jin;Heo, Pil-U;Yun, Ui-Su
    • 연구논문집
    • /
    • s.33
    • /
    • pp.17-25
    • /
    • 2003
  • In this work, thermal design of a PCR chip for LOC is systematically conducted. From the numerical simulation of a PCR chip based on the finite volume method, how to control the average temperature of a PCR chip and the temperature difference between the denaturation zone and the annealing zone is presented. The average temperature is shown to be controlled by adjusting heat input and a cooler as well as a heater is shown to be necessary to obtain three individual temperature zones for polymerase chain reaction. To reduce the time required, a heat sink for the cooler is not included in the calculation domain for the PCR chip and heat sink design is conducted separately by using a compact modeling method, the porous medium approach.

  • PDF

The design of a Synthesis Algorithm for Multichip Architectures (Multichip아키텍춰 합성 알고리듬 설계)

  • 박재환;전홍신;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.122-134
    • /
    • 1994
  • Design of a heuristic algorithm for high level synthesis of multichip architecture is presented in this paper. Considering the design constraints: individual chip area, I/O pin counts, chip-to-chip interconnection counts, interchip communication delay, and chip latecy, the proposed system automatically generates pipelined multichip architectures from behavioral descriptions. For efficient mulichip synthesis, a new methodology is proposed, which performs partitioning and schedulting of SFG into multichip architectures simultaneously. Experimental results for several benchmark programs show that the systems can be used for designing multichip hardware efficiently.

  • PDF

Design and Analysis of Cutting Chip Collecting Apparatus for 5 Head Router Machine (압축공기 토출방식 절삭칩 회수장치 설계 및 해석)

  • 김현섭;이택민;김동수;최병오;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1133-1136
    • /
    • 2004
  • The structures of airplane consist of sheet metal part, heavy machined part, and so on, which generate enormous amounts of cutting chip when these parts are machined. The cutting chip detoriorates the part quality and production efficiency. Therefore, cutting chip collecting apparatus is necessary for better quality and efficiency. In this study, blowing type cutting chip collecting apparatus was newly proposed and the concept design of the apparatus was examined through numerical analysis. Computations using the mass-averaged implicit 2D Navier-Stokes equations are applied to predict the nozzle flow field. The standard k-e turbulent model are employed to close the governing equations. Consequently, this study shows that the suggested blowing type cutting chip collecting apparatus can be alternative to existing expensive chip collecting apparatus.

  • PDF