• Title/Summary/Keyword: chicoric acid

Search Result 9, Processing Time 0.031 seconds

Luteolin and Chicoric Acid, Two Major Constituents of Dandelion Leaf, Inhibit Nitric Oxide and Lipid Peroxide Formation in Lipopolysaccharide-Stimulated RAW 264.7 Cells

  • Park, Chung-Mu;Park, Ji-Young;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.92-97
    • /
    • 2010
  • Luteolin and chicoric acid are the most abundant phytochemicals in dandelion (Taraxacum officinale) leaf. In this study, four kinds of extraction methods [hot water, ambient temperature (AT) water, ethanol, and methanol] were applied to analyze the contents of both phytochemicals and verify their anti-inflammatory and antioxidative activities. The methanol extract showed the most potent nitric oxide (NO) inhibitory effect. The luteolin and chicoric acid concentrations were 3.42 and $12.86\;{\mu}g/g$ dandelion leaf in the methanol extract. The NO-suppressive effect of luteolin and chicoric acid was identified in a dose-dependent manner with $IC_{50}$ values of $21.2\;{\mu}M$ and $283.6\;{\mu}M$, respectively, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells without cytotoxicity. Malondialdehyde (MDA) concentration, as an index for free radical injury on cell membrane, was also dose-dependently inhibited by the two compounds. The suppressive effect was further examined using mRNA and protein expression levels, which were attributable to the inhibition of inducible nitric oxide synthase (iNOS). These results suggest that two phytochemicals in dandelion leaf, luteolin and chicoric acid, may play an important role in the amelioration of LPS-induced oxidative stress and inflammation.

Phytochemical Analysis of the Phenolic Fat-Suppressing Substances in the Leaves of Lactuca raddeana in 3T3-L1 Adipocytes

  • Nugroho, Agung;Choi, Jae Sue;An, Hyo-Jin;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.42-48
    • /
    • 2015
  • Lactuca raddeana (Compositae) is used to treat obesity and complications due to diabetes. The five phenolic compounds including chlorogenic acid, chicoric acid, luteolin 7-O-glucoside, luteolin 7-O-glucuronide, luteolin were qualitatively identified by LC-ESI-MS analysis. The contents were quantitatively determined by HPLC, under the condition of a Capcell Pak C18 column ($5{\mu}m$, $250mm{\times}4.6mm\;i.d.$) and a gradient elution of 0.05% trifluoroacetic acid (TFA) and 0.05% TFA in $MeOH-H_2O$ (60 : 40). The contents of chicoric acid (100.99 mg/g extract) and luteolin 7-O-glucoside (101. 69 mg/g extract) were high, while those of other three phenolic substances were very low. The 3T3-L1 adipocyte cells treated with chicoric acid and luteolin 7-O-glucuronide significantly suppressed the accumulation of fat, suggesting they are effective against obesity. Since high level of peroxynitrite (ONOO) causes cardiovascular disease in obese patients, its scavenging activity was also studied.

Suppression of colon cancer by administration of Canavalia gladiata D.C. and Arctium lappa L., Redix extracts in tumor-bearing mice model (종양이식 생쥐모델에서 도두(刀豆), 우방근(牛蒡根) 추출물의 대장암 억제 효과)

  • Jang, Ji-Hye;Ji, Kon-Young;Choi, Hyung-Seok;Yang, Won-Kyung;Kim, Han-Young;Kim, Kun-hoae;Kang, Hyung-Sik;Lee, Young-Cheol;Kim, Seung-Hyung
    • The Korea Journal of Herbology
    • /
    • v.32 no.5
    • /
    • pp.27-38
    • /
    • 2017
  • Objective : In the present study, we examined whether Canavalia gladiata D.C. (CG) and Arctium lappa L., Redix (AL) mixture (CGAL), their components, lupeol and chicoric acid, regulate immune system and suppress the tumor in vitro and in vivo. Methods : LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) were measured after treatment with CG extract (CGE), CGAL, lupeol, chicoric acid and lupeol and chicoric acid mixture (lupeol+CA) in Raw264.7 cell. To determine the effect of CGE on immune responses, immune cell population and IgG production were assessed in mice. To investigate the effect of CGAL and their component on anti-tumor activity, tumor volume and weight were measured, cell cycles and immune cell population were analyzed in MC38 injected tumor bearing mice. Also, NK cell activity was determined in splenocyte isolated from tumor bearing mice. Results : CGE, CGAL, lupeol, chicoric acid and lupeol+CA decreased the LPS-induced ROS and NO production without cell toxicity in RAW264.7 cells. CGE increased the immune cell populations of $CD4^+T$, $CD8^+T$ and macrophages in various immune organ of mice. In tumor bearing mice, CGAL, lupeol, chicoric acid and lupeol+CA suppressed tumor volume and weight. In cell cycle analysis, they decreased the percentages of S phase. In addition, CGAL, lupeol, chicoric acid and lupeol+CA immune cell populations of $CD4^+T$, $CD8^+Tcell$, NK cell and macrophage in tumor as well as NK cell activity. Conclusion : CGAL and its compounds may enhance immune responses and suppress tumor growth, and may be capable of developing health functional foods.

Pancreatic Lipase Inhibitors in the Roots of Taraxacum ohwianum, a Herb Used in Korean Traditional Medicine (민들레 뿌리로부터 Pancreatic lipase 저해 물질의 분리)

  • Kim, Tae-Wan;Kim, Tae-Hoon
    • Food Science and Preservation
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Activity-guided isolation from an ethylacetate-soluble fraction of a 70% (v/v) ethanolic extract from the roots of Taraxacum ohwianum, using a pancreatic lipase inhibition assay, resulted in isolation and identification of five phenolic metabolites of previously known structure; these were 3,5-di-O-caffeoylquinic acid, chicoric acid, caffeic acid, protocatechuic aldehyde, and luteolin. All structures were confirmed by NMR and MS scpectroscopic data. Of these compounds 3,5-di-O-caffeoylquinic acid exhibited the most potent inhibitory activity, with $IC_{50}$ of $65.1{\pm}0.7\;{\mu}M$ against pancreatic lipase.

Polyphenol Analysis and Peroxynitrite Scavenging Effect of the Extracts from Eight Korean Mountainous Vegetable (한국 산채류 8종 추출물의 폴리페놀 함량분석 및 Peroxynitrite 소거효과)

  • Nugroho, Agung;Kim, Myung-Hoe;Lee, Jin-Ha;Kim, Jong-Dai;Lee, Kang-Ro;Choi, Jae-Sue;Yoo, Yeong-Min;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.1
    • /
    • pp.38-45
    • /
    • 2011
  • Mountainous vegetables are usually used in the early stage of plant growth. We attempted to identify the quantity of polyphenols (caffoeoylquinic acids (CQs) and flavonoids) and peroxynitrite scavenging effect ($ONOO^-$) of eight Korean mountainous vegetables. The prominent characteristics were as follows: Only the roots of two plants Taraxacum platycarpum and Ixeris dentata contained chicoric acid. Five CQs were identified in the leaves of Cacalia firma whereas only 3-p-coumaroylquinic acid in the petioles of the plant was shown. The quantities of polyphenols such as quinic acid or tartaric acid derivatives in the mountainous vegetables were generally high, though those of flavonoids were very low. The $IC_{50}$ of chlorogenic acid, chicoric acid and kaempferol were 0.31, 0.12 and $0.25\;{\mu}g/ml$, respectively.

Synthesis of Bis(pyronyl)acrylic Acid Ester Derivatives (Bis(pyronyl)acrylic Acid Ester 유도체의 합성)

  • Nam, Seung-Ok;Kim, Dong-Han;Lee, Yong-Sup
    • YAKHAK HOEJI
    • /
    • v.53 no.2
    • /
    • pp.89-92
    • /
    • 2009
  • Dicaffeoyltartaric acid has a structural feature consisting of two caffeic acid units separated by tartaric acid linker and has been found to be a potent inhibitor of HIV-1 integrase and an antioxidant. In this study, bis(pyronyl)acrylic acid esters joined through a 5-membered ring as a linker were synthesized as the analogues of dicaffeoyltartaric acid.

Quantitative Determination of Five Phenolic Peroxynitrite-scavengers in Nine Korean Native Compositae herbs

  • Nugroho, Agung;Lim, Sang-Cheol;Karki, Subash;Choi, Jae Sue;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • Peroxynitrite (ONOO)-scavenging activities of nine Compositae herbs consisting of three Ixeris, two Youngia, two Cirsium and one of each Lactuca and Taraxacum species were evaluated. The contents of their ONOO scavengers in the extracts were also determined on a HPLC using seven standard compounds, chlorogenic acid (CGA), chicoric acid (CA), luteolin 7-glucoside (luteolin-7-glc), luteolin 7-glucuronide (luteolin-7-glcU), luteolin, linarin and pectolinarin. Five of those compounds exhibited potent ONOO-scavenging activities: IC50, CA (0.76 μM), CGA (1.34 μM), luteolin (0.81 μM), luteolin-7-glc (0.86 μM) and luteolin-7-glcU (3.13 μM). Both CA and luteolin-7-glc were highly contained in I. dentata (19.71 mg/g and 13.58 mg/g, respectively), I. dentata var. albiflora (17.58 mg/g and 23.83 mg/g, respectively) and I. sonchifolia (65.71 mg/g and 6.99 mg/g, respectively). Among the nine herbs, those three Ixeris species had very low IC50 values over the range of 0.48 - 1.74 μg/mL, suggesting that they could be potential therapeutic vegetables, particularly for preventing diabetic complications or obesity, which can be caused by an excess production of ONOO.

Study on Phenolic Compounds in Lettuce Samples Cultivated from Korea Using UPLC-DAD-QToF/MS (국내 재배 상추로부터 UPLC-DAD-QToF/MS를 이용한 페놀화합물 성분 비교 연구)

  • Kim, Heon-Woong;Lee, Seon-Hye;Asamenew, Gelila;Lee, Min-Ki;Lee, Suji;Park, Jin Ju;Choi, Youngmin;Lee, Sang Hoon
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.6
    • /
    • pp.717-729
    • /
    • 2019
  • The chemical informs about 70 individual phenolic compounds were constructed from various lettuce samples based on literature sources and analytical data. A total of 30 phenolic compounds including quercetin 3-O-glucuronide, quercetin 3-O-(6''-O- malonyl) glucoside, cyanidin 3-O-(6''-O-malonyl)glucoside, chlorogenic acid and chicoric acid as major components were identified in 6 lettuce samples from Korea using UPLC-DAD-QToF/MS on the basis of constructed library. Among these, quercetin 3,7-di-O-glucoside(m/z 627 [M+H]+), quercetin 3-O-(2''-O-malonyl)glucoside(morkotin C, m/z 551 [M+H]+), quercetin 3-O-(6''- O-malonyl)glucoside methyl ester(m/z 565 [M+H]+), 5-O-cis-p-coumaroylquinic acid(m/z 339 [M+H]+) and 5-O-caffeoylquinic acid methyl ester(m/z 369 [M+H]+) were newly confirmed from the lettuce samples. In total content of phenolic compounds, 4 red lettuce samples(2,947.7~7,535.6 mg/100 g, dry weight) showed higher than green lettuce(2,687.3 mg) and head lettuce(320.1 mg).

Comparison of Antioxidant Activities of Water Extract from Dandelion (Taraxacum officinale) Aerial Parts, Roots, and Their Mixtures (서양민들레(Taraxacum officinale) 지상부, 지하부 및 혼합 추출물의 항산화 활성 비교)

  • Jung, Hyun Jung;Sung, Hea Mi;Kim, Kyung Mi;Shin, Yu-Rim;Wee, Ji-Hyang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1157-1164
    • /
    • 2015
  • The present investigation evaluated the antioxidant activities of water extracts from dandelion (Taraxacum officinale) aerial parts, roots, and mixed extracts. Mixed extract of T. officinale was a mixture of aerial parts and roots at 9:1 and 8:2 weight ratios. Extracts from aerial parts (DAE), roots (DRE), and mixture of aerial parts and roots (DME) were measured for cell viability and catalase activity in HepG2 cells, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and lipid peroxidation inhibitory activity. Cell viabilities of HepG2 cells treated with DAE, DRE, DME 8:2, and DME 9:1 against $H_2O_2$-induced oxidative damage were 63.4%, 54.6%, 76.7% and 83.4% at a concentration of $400{\mu}g/mL$, respectively. Catalase activity was highest in DME 9:1 (12.2 mU/min/mg protein) compared with DAE (9.0 mU/min/mg protein) and DRE (9.7 mU/min/mg protein). DPPH radical scavenging activity of DME showed a significantly lower $EC_{50}$ value than DAE ($EC_{50}$ value of DME $9:1=163.3{\mu}g/mL$, DME $8:2=172.4{\mu}g/mL$, and $DAE=173.7{\mu}g/mL$). Lipid peroxidation inhibitory activity of DME showed a significantly lower $EC_{50}$ value than DAE [$EC_{50}$ values of DME $(9:1)=454.4{\mu}g/mL$, DME $(8:2)=426.6{\mu}g/mL$, and $DAE=654.7{\mu}g/mL$]. The results indicate that a small amount of T. officinale roots increased antioxidant activity of aerial parts. Especially, a 9:1 mixture was more valuable than 8:2 mixture for industry.