한국 산채류 8종 추출물의 폴리페놀 함량분석 및 Peroxynitrite 소거효과

Polyphenol Analysis and Peroxynitrite Scavenging Effect of the Extracts from Eight Korean Mountainous Vegetable

  • Nugroho, Agung (Department of Pharmaceutical Engineering, Sangji University) ;
  • Kim, Myung-Hoe (Department of Pharmaceutical Engineering, Sangji University) ;
  • Lee, Jin-Ha (Department of Food Science & Biotechnology, Kangwon National University) ;
  • Kim, Jong-Dai (Department of Food Science & Biotechnology, Kangwon National University) ;
  • Lee, Kang-Ro (College of Pharmacy, SungKyunKwan University) ;
  • Choi, Jae-Sue (Devision of Food Science and Biotechnology, Pukyong National University) ;
  • Yoo, Yeong-Min (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Park, Hee-Juhn (Department of Pharmaceutical Engineering, Sangji University)
  • 투고 : 2011.01.15
  • 심사 : 2011.02.09
  • 발행 : 2011.03.31

초록

Mountainous vegetables are usually used in the early stage of plant growth. We attempted to identify the quantity of polyphenols (caffoeoylquinic acids (CQs) and flavonoids) and peroxynitrite scavenging effect ($ONOO^-$) of eight Korean mountainous vegetables. The prominent characteristics were as follows: Only the roots of two plants Taraxacum platycarpum and Ixeris dentata contained chicoric acid. Five CQs were identified in the leaves of Cacalia firma whereas only 3-p-coumaroylquinic acid in the petioles of the plant was shown. The quantities of polyphenols such as quinic acid or tartaric acid derivatives in the mountainous vegetables were generally high, though those of flavonoids were very low. The $IC_{50}$ of chlorogenic acid, chicoric acid and kaempferol were 0.31, 0.12 and $0.25\;{\mu}g/ml$, respectively.

키워드

참고문헌

  1. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266: 4244-4250.
  2. Haenen, G. R., Paquay, J. B., Korthouwer, R. E. and Bast, A. (1997) Peroxynitrite scavenging by flavonoids. Biochem. Biophys. Res. Commun. 236: 591-593. https://doi.org/10.1006/bbrc.1997.7016
  3. Korda, M., Kubant, R., Patton, S. and Malinski, T. (2008) Leptin-induced endothelial dysfunction in obesity. Am. J. Physiol. Heart Circ. Physiol. 295: 1514-1521. https://doi.org/10.1152/ajpheart.00479.2008
  4. Patcher, P., Obrosova, I. G., Mabley, J. G. and Szabo, C. (2005) Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr. Med. Chem. 12: 267-275. https://doi.org/10.2174/0929867053363207
  5. Drel, V. R., Patcher, P., Vareniuk, I., Pavlov, I., Lyzogulbov, V. V., Grovez, J. T. and Obrosova, I. G. (2007) A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eup. J. Pharmacol. 569: 48-58. https://doi.org/10.1016/j.ejphar.2007.05.055
  6. Nugroho, A., Kim, K. H., Lee, K. R., Alam, M. B., Choi, J. S., Kim, W. B. and Park, H. J. (2009) qualitative and quantitative determination of the caffeoylquinic acids on the Korean mountainous vegetables used for chwinamul and their peroxynitrite-scavenging effect. Arch. Pharm. Res. 32: 1361-1367. https://doi.org/10.1007/s12272-009-2003-6
  7. Tipce, G. L., Leung, T. M., Hung, M. W. and Fung, M. L. (2007) Green tea polyphenols as an anti-oxidant and antiinflammatory agent for cardiovascular protection. Cardivasc. Hematol. Disord. Drug. Targets 7: 135-144. https://doi.org/10.2174/187152907780830905
  8. Boveris, A., Validez, L. and Alvarez, S. (2002) Inhibition by wine polyphenols of peroxynitrite-initiated chemiluminescence and NADH oxidation. Ann. N. Y. Acad. Sci. 957: 90-102. https://doi.org/10.1111/j.1749-6632.2002.tb02908.x
  9. Kooy, N. W., Royall, J. A., Ischiropoulos, H. and Beckman, J. S. (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16: 149-156. https://doi.org/10.1016/0891-5849(94)90138-4
  10. Nugroho, A., Choi, J., Lee, K. R., Bachri, M. S., Choi, J. S., Kim, W. B., Lee, K. T. and Park, H. J. (2010) Anti-ulcerogenic effect of the caffeoylquinic acid-rich extract from Ligularia stenocephala and HPLC analysis. Biol. Pharm. Bull. 33: 493-497. https://doi.org/10.1248/bpb.33.493
  11. Nugroho, A., Bachri, M. S., Choi, J., Choi, J. S., Kim, W. B., Lee, B. I., Kim, J. D. and Park, H. J. (2010) The inhibitory effect of the caffeoylquinic acid-rich extract of Ligularia stenocephala leaves on obesity in the high fat diet-induced rat. Nat. Prod. Sci. 16: 80-87.
  12. Kim, M. Y., Yoo, Y. M., Nam, J. H., Choi, J. and Park, H. J. (2007) Quantitative determination on the constituents of the stem bark and the leaf shoot of Kalopanax pictus by HPLC Analysis. Kor. J. Pharmacogn. 38: 270-276.
  13. Oh, I. S., Sung, T. H. and Kim, M. R. (2003) Ixeris dentata extract maintains glutathione concentrations in mouse brain tissue under oxidative stress induced by kainic acid. J. Med. Food 6: 353-358. https://doi.org/10.1089/109662003772519912
  14. Hong, S., Jeong, D., Kim, K. and Hwang, E. (2010) The composition of the root of Ixeris dentate var. albiflora Nakai and cell viability and DPPH radical scavenging activities of its extract. Korean J. Nutr. 43, 105-113. https://doi.org/10.4163/kjn.2010.43.2.105
  15. Ki, J.-W. (2006) Pharmacognosy, pp. 479-481, Dongmyungsa, Seoul.
  16. Schutz, K., Kammerer, D. R., Carle, R. and Schieber, A. (2005) Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale Web. Ex Wigg.) root and herb by high-performance chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrum 19: 179-186. https://doi.org/10.1002/rcm.1767
  17. Schutz, K., Carle, R. and Schieber, A. (2006) Taraxacum-A review on its phytochemical and pharmacological profile. J. Ethnopharmacol., 107: 313-323. https://doi.org/10.1016/j.jep.2006.07.021
  18. Liu, X.-Y, Ma, J., Park C.-M., Chang, H.-K. and Song, Y.-S. (2008) Protective effect of dandelion extracts on ethanolinduced acute hepatotoxicity in C57BL/6 mice. J. Food Sci. Nutr. 13: 269-275. https://doi.org/10.3746/jfn.2008.13.4.269
  19. Park, C. M., Park, J. Y. and Song, Y. S. (2010) Luteolin and chicoric acid, two major constituents of dandelion leaf, inhibit nitric oxide and lipid peroxide formation in lipopolysaccharide-stimulated RAW 264.7 cells. J. Food Sci. Nutr. 15, 92-97. https://doi.org/10.3746/jfn.2010.15.2.092
  20. Heo, S.-I. and Wang, M.-H. (2008) Antioxidant activity and cytotoxicity effect of extracts from Taraxacum mongolicum H.. Kor. J. Pharmacognosy 39: 255-259.
  21. McDougall, B., King, P. J., Wu,B. W., Wu, B. W., Hostomsky, Z.,Reinecke, M. G. and Robinson, W. E. R.. (1998) Dicaffeoylquinic acid dicaffoyltartaric acids are selective inhibitors of human immunodeficiency virus type I integrase. Antimicrob. Agents Chemother. 42: 140-146.
  22. Lee, S. U., Shin, C.-G., Lee, C. K. and Lee, Y. S. (2007) Caffeoylglycolic and caffeoylamino acid derivatives, halfmers of L-chicoric acid, as new HIV-1 integrase inhibitors. Eur. J. Med. Chem. 42, 1309-1315. https://doi.org/10.1016/j.ejmech.2007.02.016
  23. Tousch, D., Lajoix, A.-D., Hosy, E., Azay-Milhau, J., Ferrare, K., Jahannault, C., Cros, G. and Petit, P. (2008) Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem. Biophys. Res. Commun. 377: 131-135. https://doi.org/10.1016/j.bbrc.2008.09.088
  24. Sakurai, N., Iizuka, T., Nakayama, S. and Funayama, H. (2003) Vasorelaxant activity of caffeic acid derivatives from Cichorium intybus and Equisetum arvense. Yakugaku Zasshi 123: 593-598. https://doi.org/10.1248/yakushi.123.593
  25. Hu, W., Heo, S.-I. and Wang, M. H. (2009) Antioxidant and anti-inflammatory activity of Kalopanax pictus leaf. J. Korean Soc. Appl. Biol. Chem. 52: 360-366. https://doi.org/10.3839/jksabc.2009.064
  26. Park, H.-J., Nugroho, A., Lee, J., Kim, J.-D., Kim, W.-B., Lee, K.-R. and Choi, J.-S. (2009) HPLC analysis of caffeoylquinic acids in the extract of Cacalia firma and peroxynitrite scavenging effect. Kor. J. Pharmacogn. 40: 365-369.
  27. Lim, T.-S., Oh, H.-J., Do, J. R. and Kim, H.-S. (2006) Physiological activities of leek extracts from Allium tuberosum and Allium senescens. J. Korean Soc. Food Sci. Nutr. 35: 301-306. https://doi.org/10.3746/jkfn.2006.35.3.301