• Title/Summary/Keyword: chemopreventive potential

Search Result 189, Processing Time 0.033 seconds

Induction of Quinone Reductase, an Anticarcinogenic Marker Enzyme, by Extract from Chrysanthemum zawadskii var. latilobum K.

  • Kim, Ju-Ryoung;Kim, Jung-Hyun;Lim, Hyun-Ae;Jang, Chan-Ho;Kim, Jang-Hoon;Kwon, Chong-Suk;Kim, Young-kyun;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.4
    • /
    • pp.340-343
    • /
    • 2005
  • Induction of NAD(P)H:(quinone-acceptor) oxidoreductase (QR) which promotes obligatory two electron reduction of quinones and prevents their participation in oxidative cycling and thereby the depletion of intracellular glutathione, has been used as a marker for chemopreventive agents. Induction of phase II enzyme is considered to be an important mechanism of cancer prevention. In our previous study, we assessed the quinone reductase QR-inducing activities of 216 kinds of medicinal herb extracts in cultured murine hepatoma cells, BPRc1 and hepalc1c7 cells. Among the 216 herbal extracts tested in that study, extracts from Chrysanthemum zawadskii showed significant induction of QR. In this study, we examined QR-inducing activity of solvent fractions of the herbal extract. The dichloromethane fraction of the herb showed the highest QR induction among the samples fractionated with four kinds of solvents with different polarity. The fraction also significantly induced the activity of glutathione S-transferase (GST), one of the major detoxifying enzymes, at $4{\mu}g/mL\;and\;2{\mu}g/mL$ in hepalc1c7 and BPRc1 cells, respectively. In conclusion, dichloromethane-soluble fraction of Chrysanthemum zawadskii which showed relatively strong induction of detoxifying enzymes merits further study to identify active components and evaluate their potential as cancer preventive agents.

Comparative Studies to Evaluate Relative in vitro Potency of Luteolin in Inducing Cell Cycle Arrest and Apoptosis in HaCaT and A375 Cells

  • George, Vazhapilly Cijo;Kumar, Devanga Ragupathi Naveen;Suresh, Palamadai Krishnan;Kumar, Sanjay;Kumar, Rangasamy Ashok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.631-637
    • /
    • 2013
  • Luteolin is a naturally occurring flavonoid present in many plants with diverse applications in pharmacology. Despite several studies elucidating its significant anti-cancer activity against various cancer cells, the mechanism of action in skin cancer is not well addressed. Hence, we investigated the effects of luteolin in HaCaT (human immortalized keratinocytes) and A375 (human melanoma) cells. The radical scavenging abilities of luteolin were determined spectrophotometrically, prior to a cytotoxic study (XTT assay). Inhibitory effects were assessed by colony formation assay. Further, the capability of luteolin to induce cell cycle arrest and apoptosis were demonstrated by flow cytometry and cellular DNA fragmentation ELISA, respectively. The results revealed that luteolin possesses considerable cytotoxicity against both HaCaT and A375 cells with $IC_{50}$ values of 37.1 ${\mu}M$ and 115.1 ${\mu}M$, respectively. Luteolin also inhibited colony formation and induced apoptosis in a dose and time-dependent manner by disturbing cellular integrity as evident from morphological evaluation by Wright-Giemsa staining. Accumulation of cells in G2/M (0.83-8.14%) phase for HaCaT cells and G0/G1 (60.4-72.6%) phase for A375 cells after 24 h treatment indicated cell cycle arresting potential of this flavonoid. These data suggest that luteolin inhibits cell proliferation and promotes cell cycle arrest and apoptosis in skin cancer cells with possible involvement of programmed cell death, providing a substantial basis for it to be developed into a potent chemopreventive template for skin cancer.

Analysis of (-)-Epigallocatechin-3-Gallate-Induced Apoptosis and Inhibition of Invasiveness in Oral Cavity Carcinoma Squamous Cell Carcinoma According to Expression of c-Met (구강암편평세포암에서 c-Met 발현여부에 따른 (-)-Epigallocatechin-3-Gallate의 세포사멸 및 종양침습억제효과의 변화분석)

  • Shin, Yoo-Seob;Koh, Yoon-Woo;Choi, Eun-Chang;Kang, Sung-Un;Hwang, Hye-Sook;Choo, Oak-Sung;Lee, Han-Bin;Kim, Chul-Ho
    • Korean Journal of Head & Neck Oncology
    • /
    • v.27 no.1
    • /
    • pp.3-11
    • /
    • 2011
  • Hepatocyte growth factor(HGF) and c-Met play an important role in the control of tumor growth and invasion, and they are known to be good prognostic indicators of patient outcome. Epigallocatechin-3-gallate (EGCG) has been shown to have chemopreventive and therapeutic properties by modulating multiple signal pathways regarding the control of proliferation and invasion of cells. In this study, we evaluated the role of c-Met in EGCG-induced inhibition of invasion and apoptosis in an oral cancer cell line. In KB cells where c-Met was knocked down with siRNA, we performed invasion assay and FACS with Annexin V-FITC/PT staining. In addition, we checked the change of mitochondrial membrane potential(MMP) and the generation of reactive oxygen species(ROS). EGCG-induced inhibition of invasiveness was significantly decreased after the knock-down of c-Met. EGCG-induced apoptosis, MMP change and ROS generation was also reduced in c-Met knock-ed-down KB cells. These results suggest that c-Met is involved in EGCG-induced apoptosis and inhibition of invasiveness of oral cancer cell line.

Study on Antiangiogenic Effect of Black Ginseng Radix (흑삼의 신생혈관 억제활성에 대한 연구)

  • Song, Gyu-Yong;Chung, Kyu-Jin;Shin, Young-Jin;Lee, Gye-Won;Lee, Sook-Young;Seo, Young-Bae
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.83-90
    • /
    • 2011
  • Objectives : This study was performed to investigate the influence of black ginseng radix extracts (BG) and ginsenoside Rg3, Rg5 on basic fibroblast growth factor (bFGF) induced proliferation, migration and capillary tubule-like formation of human umbilical vein endothelial cells (HUVECs). Methods : HUVECs were cultured with BG and ginsenoside Rg3, Rg5 at different concentrations (60, 125, 250, 500, $1,000{\mu}g/m\ell$) for 2 day In the presence of bFGF, respectively. XTT was used to detect the proliferation. Migration and tube formations were examined to detect the antiangiogenesis. Also, the chick embryo chorioallantoic membrane (CAM) assay was performed to detect the antiangiogenesis. Results : BG and ginsenoside Rg3, Rg5 significantly inhibited bFGF-induced endothelial cell proliferation and migration in a dose-dependent manner. Tube formation in bFGF-induced HUVECs were suppressed by BG and ginsenoside Rg3, Rg5. Moreover, BG and ginsenoside Rg3, Rg5 (30-$50{\mu}g$/egg) inhibited new blood vessel formation on the growing CAM. Conclusions:Based on the present results, it can be suggested that BG has a potential chemopreventive agent via antiangiogenesis.

Effect of Cnidium officinale Makino Aqua-acupuncture Solution on Carcinogen-induced Carcinogenesis in In vitro (In vitro에서 발암물질에 의한 발암진행에 미치는 천궁약침액의 영향)

  • Han Sang-Hoon;No Dong-Il;Lee Ki-Tek;Shon Yun-Hee;Baek Tae-Seon;Nam Kyung-Soo;Lim Jong-Kook
    • Korean Journal of Acupuncture
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • The effects of Cnidium officinale Makino aqua-acupuncture solution (COMAS) and Cnidium officinale Makino water-extraced solution (COMWS) on the CYP1A1 activity and benzo[a]pyrene(B[a]P)-DNA adduct formation were examined. There were 6.8%, 12.1%, 15.1%, 18.3% and 22.6% inhibition in the activity of cytochrome 4501A1 enzyme with the treatment of $0.1{\times},\;0.5{\times},\;1{\times},\;3{\times},\;and\;5{\times}$ COMAS, respectively. At concentration of $0.1{\times}$ COMAS, the binding of $[^3H]B[a]P$ metabolites to DNA of NCTC-clone 1469 cell was significantly inhibited by 56.9%. These results suggest that COMAS has chemopreventive potential by inhibiting cytochrome P4501A1 activity and benzo[a]pyrene-DNA adduct formation.

  • PDF

Excess Taurine Induced Placental Glutathione S-transferase Positive Foci Formation in Rat

  • Kweon, Sang-Hui;Kim, Yoon;Choi, Hay-Mie;Kwon, Woo-Jung;Chang, Kyung-Ja
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.469-475
    • /
    • 2000
  • The purpose of this study was to examine the chemopreventive potential of taurine at various levels on the diethylnitrosamine (DEN)·induced hepatocarcinogenesis. Male Sprague-Dawley rats were fed on diets containing 0, 1, 2, 3% taurine or 5% ${\beta}-alanine$ for taurine depletion. Then they were treated with DEN and 2/3 partial hepatectomy. The number of placental glutathione S-transferase positive ($GST-P^+$) foci, as a preneoplastic marker in the 1 % taurine group was lower than the control diet group. However the difference was insignificant. Although taurine diets reduced the thiobarbituric acid reactive substance (TBARS) level, the number of $GST-P^+$ foci was increased in 3% taurine diet group. The 1 % taurine diet increased the glutathione (GSH) level and GST activity, however they unfortunately did not suppress the foci formation. In the 3% taurine group, the GSH level and GSH peroxidase (GPx) activity were significantly decreased. Excess taurine supplementation of the pharmaceutical dose worked against hepatic chemoprevention, which might result from modulation of GPx activity and GSH utility. On the contrary, taurine might work as an antioxidant against TBARS production as the 1 % taurine diet increased GSH level. The potency of the cancer preventive effect of taurine still remains and further studies should investigate the effect of taurine with less than 1 % levels on the prevention of hepatic cancer.

  • PDF

Biphasic Effects of Kaempferol on the Estrogenicity in Human Breast Cancer Cells

  • Oh Seung-Min;Kim Yeon-Pan;Chung Kyu-Hyuck
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.354-362
    • /
    • 2006
  • Dietary flavonoids have attracted a great deal of attention as agents for preventing estrogen-related diseases, such as postmenopausal symptoms, and for reducing the risk of estrogen-dependent cancer. Kaempferol is one of the most commonly found dietary phytoestrogen. The aim of this study was to investigate the estrogenic and/or antiestrogenic effect of kaempferol, which can confirm its potency as a preventive agent against estrogen-related diseases. Kaempferol has both estrogenic and antiestrogenic activity, which are biphasic response on estrogen receptor. The estrogenic activity of kaempferol induced via ER-mediated pathway depending on $E_2$ concentration $(\leq\;10^{-12}M)$. Kaempferol $(10^{-5}\;M)$ also caused antiproliferative effect on MCF-7 cell in the presence of $E_2\;(10^{-11}\;M)$ and restored to the addition of excess $E_2\;(10^{-7}\;M)$, which confirms that antiproliferation of kaempferol was induced via ER-dependent pathway. However, at $10^{-4}\;M$, concentration higher than the concentrations at which the estrogenic effects of kaempferol are detected $(10^{-5}\;M)$, kaempferol induced strong antiproliferative effect, but were unaffected by the addition of excess $E_2\;(10^{-7}\;M)$ indicating that kaempferol exerts antiproliferation via ER-independent pathway. In particular, kaempferol blocked the focus formation induced by $E_2$, which confirms that kaempferol might inhibit the malignant transformation caused by estrogens. Therefore, we suggested that kaempferol might regulate a suitable level of estrogenic activity in the body and is expected to have potential beneficial effects in preventing estrogen imbalance diseases (breast cancer, osteoporosis, cardiovascular disease and etc.).

Effects of Benzyl Isothiocyanate and Its N-Acetylcysteine Conjugate on Induction of Detoxification Enzymes in Hepa1c1c7 Mouse Hepatoma Cells

  • Hwang, Eun-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with $0.1{\sim}1.0{\mu}M$ BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; $0.5{\mu}M$ and $10{\mu}M$ NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with $0.1{\sim}2.0{\mu}M$ BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with $1{\mu}M$ and $2{\mu}M$ BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with $1{\mu}M$ and $2{\mu}M$ NAC-BITC caused 1.6-and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in $0.1{\sim}2{\mu}M$ BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in $0.1{\mu}M$ NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., $1{\sim}2{\mu}M$) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents.

Chemical constituents from the culture filtrate of a Himalayan soil fungus, Preussia sp. and their anti-inflammatory activity (히말라야의 토양 곰팡이, Preussia sp. 배양액으로부터 추출된 화학 성분들 및 항 염증 활성)

  • Youn, Ui Joung;Seo, Seung Suk;Yim, Jung Han;Kim, Il Chan;Han, Se Jong
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • A new naturally occurring benzoic acid derivative, benzyl 2,4-di(benzyloxy)benzoate (1) and six known compounds (2-7) were isolated from the fungus, Preussia sp. found in frozen soil of the Himalaya Mountain. The structures of the new compound, together with the known compounds were determined by 1D-and 2D-NMR experiments, as well as comparison with published values. In addition, to the best of our knowledge, the known compounds 2-7 were isolated for the first time from the genus Preussia and the family Sporormiaceae. The isolates were evaluated for cancer chemopreventive potential based on their ability to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in mouse macrophage RAW 264.7 cells in vitro. Compounds 1 and 2 inhibited NO production by 50.7% and 88.5% at a concentration of 100 mg/ml, respectively.

Induction of Anticarcinogenic Enzymes by Dichloromethane-soluble Fraction of Physalis alkekengi var. francheti Hort. in Mouse Hepatoma Cells

  • Seo, JiYeon;Kim, Hyo Jung;Kim, Jong-Sang
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.119-124
    • /
    • 2014
  • Physalis alkekengi var. francheti Hort. is known as an insecticide and traditional remedy for liver related diseases. Therefore, this study investigated the chemopreventive effects of extracts and several solvent fractions (n-hexane, dichloromethane, n-butanol, water) of Physalis alkekengi var. francheti Hort. First, their cytotoxicity and NQO1 activity were measured using an MTT assay, plus a quinone reductase [NAD(P)H dehydrogenase (quinone); NAD(P)H: (quinone acceptor) oxidoreductase, EC 1.6.99.2]-inducing activity assay was performed using cultured murine hepatoma cells (Hepa1c1c7) and its mutant cells(BpRc1). The reduction of electrophilic quinones by NQO1 is an important detoxification pathway and major mechanism of chemoprevention. When compared with the other solvent soluble fractions with different polarities, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. showed a higher NQO1-inducing activity that was also dose-dependent. Moreover, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. induced ARE-luciferase activities in HepG2-C8 cells that were generated by transfecting the ARE-luciferase gene construct, suggesting the Nrf2-ARE-mediated induction of anti-oxidative enzymes. In conclusion, the dichloromethane-soluble fraction of Physalis alkekengi var. francheti Hort. showed a relatively strong induction of detoxifying enzymes, thereby meriting further study to identify the active components and evaluate their potential as cancer preventive agents.