Browse > Article

Biphasic Effects of Kaempferol on the Estrogenicity in Human Breast Cancer Cells  

Oh Seung-Min (College of Pharmacy, Sungkyunkwan University)
Kim Yeon-Pan (Meditech Korea Pharm)
Chung Kyu-Hyuck (College of Pharmacy, Sungkyunkwan University)
Publication Information
Archives of Pharmacal Research / v.29, no.5, 2006 , pp. 354-362 More about this Journal
Abstract
Dietary flavonoids have attracted a great deal of attention as agents for preventing estrogen-related diseases, such as postmenopausal symptoms, and for reducing the risk of estrogen-dependent cancer. Kaempferol is one of the most commonly found dietary phytoestrogen. The aim of this study was to investigate the estrogenic and/or antiestrogenic effect of kaempferol, which can confirm its potency as a preventive agent against estrogen-related diseases. Kaempferol has both estrogenic and antiestrogenic activity, which are biphasic response on estrogen receptor. The estrogenic activity of kaempferol induced via ER-mediated pathway depending on $E_2$ concentration $(\leq\;10^{-12}M)$. Kaempferol $(10^{-5}\;M)$ also caused antiproliferative effect on MCF-7 cell in the presence of $E_2\;(10^{-11}\;M)$ and restored to the addition of excess $E_2\;(10^{-7}\;M)$, which confirms that antiproliferation of kaempferol was induced via ER-dependent pathway. However, at $10^{-4}\;M$, concentration higher than the concentrations at which the estrogenic effects of kaempferol are detected $(10^{-5}\;M)$, kaempferol induced strong antiproliferative effect, but were unaffected by the addition of excess $E_2\;(10^{-7}\;M)$ indicating that kaempferol exerts antiproliferation via ER-independent pathway. In particular, kaempferol blocked the focus formation induced by $E_2$, which confirms that kaempferol might inhibit the malignant transformation caused by estrogens. Therefore, we suggested that kaempferol might regulate a suitable level of estrogenic activity in the body and is expected to have potential beneficial effects in preventing estrogen imbalance diseases (breast cancer, osteoporosis, cardiovascular disease and etc.).
Keywords
Kaempferol; (Anti-)estrogenic activity; Chemopreventive effect;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Masiakowski, R., Breathnach, R., Bloch, J., Gannon, R., Krust, A., and Chambon, P., Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res., 10, 7895-7903 (1982)   DOI   ScienceOn
2 Nomoto, S., Arao, Y., Horiguchi, H., Ikeda, K., and Kayama, F., Oestrogen causes G2/M arrest and apoptosis in breast cancer MDA-MB-231. Oncol Rep., 9, 773-776 (2002)
3 Olea, N., Pulgar, R., Perez, P., Olea-Serrano, F., Rivas, A., Novillo-Fertrell, A., Pedraza, V., Soto, A. M., and Sonnenschein, C., Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect., 104(3), 298-305 (1996)   DOI
4 Perez, P., Pulgar, R, Olea-Serrano, F., Villalobos, M., Rivas, A., Metzler, M., Pedraza, V., and Olea, N., The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environ Health Perspect., 106(3), 298-305. (1998)
5 So, F. V., Guthrie, N., Chambers, A. F., and Carroll, K. K., Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Letters, 112, 127-133 (1997)   DOI   ScienceOn
6 Upadhyay, S., Neburi, M., Chinni, S. R., Alhasan, S., Miller, F., and Sarkar, F.H., Differential sensitivity of normal and malignant breast epithelial cells to genistein is partly mediated by $p21^{WAF1}$. Clin Cancer Res., 7, 1782-1789 (2001)
7 Birt, D.F., Hendrich, S., and Wang, W., Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacology & Therapeutics, 90, 157-177 (2001)   DOI   ScienceOn
8 Fioravanti, L., Cappelletti, V., Miodini, P., Ronchi, E., Brivio, M., and Di Fronzo, G., Genistein in the control of breast cancer cell growth: insights into the mechanisms of action in vitro. Cancer Letters, 130, 143-152 (1998)   DOI   ScienceOn
9 Hung, H., Inhibition of estrogen receptor alpha expression and function in MCF-7 cells by kaempferol. Journal of cellular physiology, 198, 197-208 (2004)   DOI   ScienceOn
10 Ingram, D., Sanders, K., Kolybaba, M., and Lopez, D., Case-control study of phytoestrogens and breast cancer. Lancet, 350, 990-9940 (1997)   DOI   ScienceOn
11 Knowlden, J. M., Gee, J. M. W., Bryant, S., MeClelland, R. A., Manning, D. L., Mansel, R., Ellis, I. O., Blamey, R. W., Robertson, J. F. R., and Nicholson, R. I., Use of reverse transcription-polymerase chain reaction methodology to detect estrogen-regulated gene expression in small breast cancer specimens. Clinical Cancer Research, 3, 2165-2172 (1997)
12 Kurzer, M. S. and Xu, X., Dietary phytoestrogens. Annu Rev Nutr., 17, 353-381 (1997)   DOI   ScienceOn
13 Pozo-Guisado, E., Alvarez-Barrientos, A., Mulero-Navarro, S., Santiago-Josefat, B., and Fernandez-Salguero, P. M., The antiproliferation activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alterations of the cell cycle. Biochem Pharmacol., 54, 1375-1386 (2002)
14 Henderson, B. E., Ross, R., and Bernstein, L., Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award lecture. Cancer Res., 48, 246-253 (1988)
15 Leung, L. K. and Wang, T. T., Bcl-2 is not reduced in the death of MCF-7 cells at low genistein concentration. J Nutri., 130, 2922-2926. (2000)   DOI
16 Ciocca, D. R. and Roig, L. M., Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocrine Rev., 16, 35-62 (1995)
17 Messina, M., Barnes, S., and Setchell, K. D., Phytoestrogens and breast cancer-commentary. Lancet, 350, 971-972 (1997)   DOI   ScienceOn
18 Strauss, L., Santti, R., Saarinen, N., Streng, T., Joshi, S., and Makela, S., Dietary phytoestrogens and their role in hormonally dependent disease. Toxicology Letters, 102-103, 349-354 (1998)
19 This, P., De la Rochefordiere, A., Clough, K., Fourquet, A., and Magdelenat, H., Phytoestrogens after breast cancer. Endocrine-Related Cancer, 8, 129-134 (2001)   DOI   ScienceOn
20 De Vries J. H., Hollman, P. C., Meyboom, S., Buysman, M. N., Zock, P. L., van Staveren W. A., and Katan, M. B., Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. Am J Clin Nutr., 68, 60-65 (1998)   DOI
21 Peeters, P. H. M., Keinan-Boker, L., van der Schouw, Y. T., and Grobbee, D. E., Phytoestrogens and breast cancer risk. Breast Cancer Research and Treatment, 77, 171-183 (2003)   DOI   ScienceOn
22 Cormier, E. M. and Jordan, V. C., Contrasting ability of antiestrogens to inhibit MCF-7 growth stimulated by estradiol or epidermal growth factor. European Journal of Cancer Clinical Oncology, 25, 57-63 (1989)   DOI
23 Yager, J. D. and Liehr, J. G., Molecular mechanisms of estrogen carcinogenesis. Ann Rev Pharmacol Toxicol., 36, 203-232 (1996)   DOI   ScienceOn
24 Brown, A. M. C., Jeltsch, J. M., Roberts, M., and Chambon, P., Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci., 81, 6344-6348 (1984)
25 Macgregor J. I. and Jordan, V. C., Basic guide to the mechanisms of antiestrogen action. The American Society for Pharmacology and Experimental Therapeutics, 50(2), 151-196 (1998)
26 Brzexinski, A. and Debi, A., Phytoestrogen: the 'natural' selective estrogen receptor modulators? European Journal of Obstetrics & Gynecology and Reproductive Biology, 85, 47-51 (1999)   DOI   ScienceOn
27 Hsu, J. T., Hsu, W. L., and Ying, C., Dietary phytoestrogen regulates estrogen receptor gene expression in human mammary carcinoma cells. Nutrition Research, 19(10), 1447- 1457 (1999)   DOI   ScienceOn
28 Oh, S. M. and Chung, K. H., Estrogenic activities of Ginkgo biloba extracts. Life sciences, 74, 1325-1335 (2004)   DOI   ScienceOn
29 Ciolino, H. P., Daschner, P. J., and Yeh, G. C., Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J., 340, 715-722 (1999)   DOI
30 Gierthy, J. F., Lincoin II, D. W., Roth, K. E., Bowser, S. S., Bennett, J. A., Bradley, L., and Dickerman, H. W., Estrogenstimulation of postconfluent cell accumulation and foci formation of human MCF-7 breast cancer cells. J. Cellular Biochem., 45, 177-187 (1991)   DOI
31 Po, L. S., Chen, Z-Y, Tsang, D. S. C., and Leung, L. K., Baicalein and genistein display differential actions on estrogen receptor (ER) transactivation and apoptosis in MCF-7 cells. Cancer Letters, 187, 33-34 (2002)   DOI   ScienceOn
32 Arcaro, K. F., Vakharia, D. D., Yang, Y., and Gierthy, J. F., Lack of synergy by mixtures of weakly estrogenic hydroxylated polychlorinated biphenyls and pesticides. Environ Health Perspect., 106 (Suppl. 4), 1041-1046 (1998)   DOI
33 Peterson, G. and Barnes, S., Genistein inhibition of the growth of human breast cancer cells: independent from estrogen receptors and the multi-drug resistance gene. Biochem Biophys Res Commun., 179, 661-667 (1991)   DOI   ScienceOn
34 Wang, C. and Kurzer, M. S., Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cell. Nutr Cancer., 28(3), 236-247 (1997)   DOI   ScienceOn
35 Basly, J. P., Marre-Fournier, F., Le Bail, J. C., Habrioux, G., and Chulia, A. J., Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol. Life Sciences, 66(9), 769-777 (2000)   DOI   ScienceOn
36 Le Bail, J. C., Varnat, F., Nicolas, J. C., and Habrioux, G., Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids. Cancer Letters, 130, 209- 216. (1998)   DOI   ScienceOn
37 Wang, T. T. Y., Sathyamoorthy, N., and Phang, J. M., Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis, 17, 271-275 (1996)   DOI   ScienceOn
38 Sathyamoorthy, N., Wang, T. T. Y., and Phang, J. M., Stimulation of pS2 expression by diet-derived compounds. Cancer Research, 54, 957-961 (1994)
39 Fotsis, T., Pepper, M. S., Aktas, E., Breit, S., Rasku, S., Adlercreuta, H., Wahala, K., Montesano, R., and Schweigerer, L., Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Research, 57, 2916-2921 (1997)
40 Leung, L. K., Po, L. S., Lau, T. Y., and Yuen, Y. M., Effect of dietary flavonols on oestrogen receptor transactivation and cell death induction. British Journal of Nutrition, 91, 831-839 (2004)   DOI   ScienceOn