• Title/Summary/Keyword: chemical pump

Search Result 195, Processing Time 0.023 seconds

A Study on High Efficiency Geothermal Heat Pump System by Improving Flow of Heat Exchanger (열교환기의 흐름개선을 통한 고효율 지열 히트펌프 시스템에 관한 연구)

  • Ahn, Sung-Hwan;Choi, Jae-Sang;Kim, Sang-Bum;Ahn, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.42-46
    • /
    • 2017
  • As $CO_2$ emission with imprudent using fossil fuel, annual mean temperature of earth is increased in every year. Geothermal energy is inexhaustible energy resource to solve this problem. Heat pump performance and heat exchange efficiency of ground loop are important to distribute widely. Thus, this study are performed to increase heat pump performance and heat exchange efficiency of ground loop with dual expansion valves and spacer. As a results, COP of cooling & heating is obtained improvement up to 11.4% using dual expansion valves, and heat exchange efficiency is increased up to 17.5% using spacer. It will be reduced initial installation cost due to increasing heat pump performance and heat exchange efficiency of ground loop.

A Study on Absorber in Absorption Heat Pump with Methanol-Glycerine System as a Working Fluid (메탄올-글리세린계를 작동유체로 하는 흡수열펌프에서 흡수기 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.111-117
    • /
    • 2006
  • The improvement of energy conservation mandates decrease consumption of fossil fuels and minimize negative impacts on the environment, which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Adsorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. The increase of absorbed amount is of great importance for absorption heat pump cycle. In this study, in order to improve the performance of absorber, the absorbers of two different types have been investigated using methanol-glycerine as a working fluid. The former was tangential feed of liquid phase without spiral tube in the absorber and the latter was with spiral tube in the absorber. The latter was found to be more effective in enhancing the mass and heat transfer to increase the absorption performance.

An Analysis of the Patents for Heat Pumps (열펌프의 정량적 특허기술 분석에 관한 연구)

  • Choi Jong Min;Kim Yongchan;Cheon Deokwoo;Shin Yun-Hee;Lee Sang Hyuk;Kwak Jae Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.808-815
    • /
    • 2005
  • A technical analysis was conducted to predict the development trends for heat pump system. This study was based on submitted patents from 1983 to 2002 in Korea, USA, and Japan. The total number of raw data from the registered database was 19,261 and the obtained data to be analyzed through the filtering process was 5,143. Japan's technical development for the heat pump system was more dominant than the other countries. Approximately $54\%$ of the total patents related with the heat pump system was registered by Japan. The number of patents for the heat pump system registered by Korea was very low in 1980's, but it increased rapidly in 1990's. As a result, the number of patents applied by Korea was $21\%$ of all patents. When the patent was categorized into compression, absorption/ad-sorption, and chemical type, the technology of compression type made up over $80\%$ in each country. Approximately $93\%$ of the patents surveyed in this study was developed for air or water source heat pumps because of easy applications compared with other heat sources. The $89\%$ of all patents was applied by companies when applicants were divided into three groups of company, individual, and the others (national institute, university, and so on).

A Study on Improvement of Performance of Absorber in Absorption Heat Pump (흡수열펌프에서 흡수기의 성능 개선 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.338-344
    • /
    • 2008
  • The improvement of energy conservation is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy-saving in this respect. Absorption heat pump is a means to upgrade waste heat without the addition of extra thermal energy. The higher performance of absorber is of great importance for absorption heat pump cycle. In this study, in order to improve the performance of absorber, the absorber of tangential feed of a liquid phase with spiral tube has been investigated using methanol-glycerine as a working fluid. The spiral tube and tangential feeding generate the turbulence into the liquid flow while increasing the mass and heat transfer coefficients. The simultaneous heat and mass transfer were found to take place in a liquid turbulent film in the absorber with the spiral tube during the process of gas absorption. By calculating mass and heat transfer coefficients by measurement of the concentration and the temperature of each position in the absorber, the entrance was found to be more effective in enhancing mass and heat transfer.

On the Occurrence of Defects by Vehicle Type According to the Fire-fighting Vehicle Detailed Inspection (소방차량 정밀점검 분석에 따른 차종별 결함 발생에 관한 연구)

  • Lee, Jang Won;Han, Yong-Taek
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • Purpose: This study is based on the detailed inspection data for the last 6 years of fire-fighting high ladder vehicles, fire-fighting inflected ladder vehicles, fire-fighting chemical vehicles and fire-fighting pump vehicles used in front-line fire departments. The purpose is to contribute to the technological development of fire-fighting vehicles by grasping the implementation status of each city and province, the rate of defects, and the occurrence of defects by year. Method: The implementation status by city and province, defect incidence rate, and defect occurrences by year were analyzed. Result: From 2012 to 2017, when the average of 230 or more overhaul vehicles was requested, the results of each city/province show slight fluctuations, but the number of defects gradually decreased due to the old fire-fighting vehicle replacement project and the response of fire vehicle manufacturers. Conclusion: In the case of fire-fighting ladders, the incidence rate of defects was found to be in the order of elevator device, electric device, ladder device, and pneumatic supply device. And in the case of the fire fighting ladder, it was confirmed that the incidence of defects appeared in the order of the refractive ladder, hydraulic cylinder, hydraulic oil, and pneumatic supply device. In the case of fire-fighting chemical vehicles, it was confirmed that defects occurred in the powder fire extinguishing device, fire pump, vacuum pump, and pneumatic supply device.

A Study on the Deposit Uniformity and Profile of Cu Electroplated in Miniaturized, Laboratory-Scale Through Mask Plating Cell for Printed Circuit Board (PCBs) Fabrication

  • Cho, Sung Ki;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.108-113
    • /
    • 2016
  • A miniaturized lab-scale Cu plating cell for the metallization of electronic devices was fabricated and its deposit uniformity and profile were investigated. The plating cell was composed of a polypropylene bath, an electrolyte ejection nozzle which is connected to a circulation pump. In deposit uniformity evaluation, thicker deposit was found on the bottom and sides of substrate, indicating the spatial variation of deposit thickness was governed by the tertiary current distribution which is related to $Cu^{2+}$ transport. The surface morphology of Cu deposit inside photo-resist pattern was controlled by organic additives in the electrolyte as it led to the flatter top surface compared to convex surface which was observed in the deposit grown without organic additives.

Synthesis of Antioxidant and Evaluation of Its Oxidation Stability for Biodiesel

  • Park, Soo-Youl;Shin, Seung-Rim;Shin, Joung-II;An, Kyoung-Lyong;Jun, Kun
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.392-396
    • /
    • 2013
  • Biodiesel fuels contain unsaturated fatty acid ester, which can easily oxidize, especially when exposed to ultraviolet light. The products formed by this oxidation give rise to sediment or gum formation. As a result, the fuel can contribute to the corrosion and plugging of the filter pump. Antioxidants have been used in an effort to stabilize biodiesels, but there is still a need for a biodiesel composition with improved oxidation stability. In general, good fuel compositions should provide synergistic combinations of a biodiesel and antioxidants. Our work involved the synthesis of antioxidants to improve the oxidative stability of biodiesel fuel.

Experimental and mathematical evaluation of solar powered still equipped by nano plate as the principle stage of zero discharge desalination process

  • Jadidoleslami, Milad;Farahbod, Farshad
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.147-161
    • /
    • 2016
  • To start with, finding a sustainable method to produce sweet water and electricity by using renewable energies is one of the most important issues at this time. So, experimental and theoretical analysis of the performance of a closed solar powered still, which is jointed to photovoltaic cells and vacuum pump and equipped by nano plate, as the principle stage of zero discharge desalination process is investigated in this project. Major goal of this work is to reuse the concentrated brine of the Mobin petrochemical complex in order to produce potable, sweet water from effluent saline wastewater and generating electricity in the same time by using solar energy instead of discharging them to the environment. It is observed the increase in brackish water temperature increases the average daily production of solar desalination still considerably. Therefore, the nano plate and vacuum pump are added to augment the evaporation rate. The insolation rate, evaporation rate, the average brackish temperature, ambient temperature, density are investigated during a year 2013. In addition to obtain the capacity of solar powered still, the highest and lowest amount of water and electricity generation are reported during a twelvemonth (2013). Results indicate the average daily production is increased 16%, which represents 7.78 kW.h energy saving comparing with traditional solar still.

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Dehydration Packed Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 탈수반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.29-38
    • /
    • 2003
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the material and heat transfer rate in the cylindrical bed reactor packed with Calcined Dolomite. Our results from the studies are as follows ; 1 The time needed to complete dehydration reaction at the wall side of the cylindrical reactor(r/rL=0.5) was shorter than that of the center(r/rL=0.0) as much as 12%. 2. Two dimensional (radial and circumferential) partial differential equations, concerning heat and mass transfer rate in the packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction in the cylindrical reactor. The solution reads rate of reaction in the packed bed reactor depends on the temperature and concentration of reactants. These results read the supplied heat transfers from the wall side of the cylinder to the center, dehydration reaction begins at the inner side of the wall of the cylindrical reactor and the dehydration reaction proceeds from the wall side to center of cylinder.