Browse > Article

A Study on Absorber in Absorption Heat Pump with Methanol-Glycerine System as a Working Fluid  

Min, Byong-Hun (Department of Chemical & Biochemical Engineering, University of Suwon)
Publication Information
Applied Chemistry for Engineering / v.17, no.1, 2006 , pp. 111-117 More about this Journal
Abstract
The improvement of energy conservation mandates decrease consumption of fossil fuels and minimize negative impacts on the environment, which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Adsorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. The increase of absorbed amount is of great importance for absorption heat pump cycle. In this study, in order to improve the performance of absorber, the absorbers of two different types have been investigated using methanol-glycerine as a working fluid. The former was tangential feed of liquid phase without spiral tube in the absorber and the latter was with spiral tube in the absorber. The latter was found to be more effective in enhancing the mass and heat transfer to increase the absorption performance.
Keywords
absorption heat pump; absorber; energy saving; tangential feed; spiral tube;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Cacciola, G. Restuccia and G. Rizzo, Heat Recovery Systems & CHP, 10, 177 (1990)   DOI   ScienceOn
2 F. Ziegler and P. Riesch, Heat Recovery System & CHP, 13, 147 (1993)   DOI   ScienceOn
3 R. J. Romero, L. Guillen and I. Pilatowski, Applied Thermal Engineering, 24, 867 (2005)
4 J. P. Roberson, C. Y. Lee, R. G. Squires, and L. F. Albright, ASHRAE Trans., 72, 198 (1966)
5 T. Uemura, Refrigeration, 42, 2 (1967)
6 L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, and A. G. Kulakov, Applied Thermal Engineering, 24, 1893 (2004)   DOI   ScienceOn
7 M. A. R. Eisa, S. Devotta, and F. A. Holland, Applied Energy, 25 83 (1986)   DOI   ScienceOn
8 M. Izquierdo and S. Aroca, Int. J. Energy Research, 14, 281 (1990)   DOI
9 M. A. R. Eisa and R. Best, Applied energy, 28, 69, (1987)   DOI   ScienceOn
10 K. R. Patil, M. A. R. Eisa, and M. N. Kim, Applied energy, 34, 99 (1989)   DOI   ScienceOn
11 G. Cacciola, G. Restuccia and G. Rizzo, Heat Recovery System & CHP, 10, 177 (1990)   DOI   ScienceOn
12 K. Guo, B. Shu, and L. Chen, J. Eng. Thermophys, 15,408 (1996)
13 E. Hihara and T. Saito, Int. J. Refrigerat, 16, 339 (1993)   DOI   ScienceOn
14 W. J. F. Setterwall, Chem. Eng. Sci., 50, 3077 (1995)   DOI   ScienceOn
15 P. Le Goff and B. Schwarzer, Entropie, 156, 5 (1990)
16 R. Matsuda, 3rd IEA Heat Pump Conference, Tokyo (1990)
17 E. Lepinasse, M. Marion, and V. Gotez, Applied Thermal Engineering, 21, 1251 (2001)   DOI   ScienceOn
18 M. Narodoslawski, G. Otter, and F. Moser, Heat Recovery System & CHP, 8, 221 (1988)   DOI   ScienceOn
19 J. B. Castro, J. M. Corberian, and J. Gonzalvez, Applied Thermal Engineering, 25, 2450 (2005)   DOI   ScienceOn
20 N. Bennani and D. Prevost, Heat Recovery System & CHP, 9, 257 (1989)   DOI   ScienceOn
21 F. Ziegler and G. Grossman, Int. J. Refrigerat, 19, 301 (1996)
22 A. Jemqvist and G. Aly, Heat Recovery System & CHP, 12, 469 (1992)   DOI   ScienceOn
23 F. Ziegler and P. Riesch, Heat Recovery System & CHP, 13, 147 (1993)   DOI   ScienceOn
24 C. Kren, H. M. Hellmann, and F. Ziegler, Proceeding of the International Sorption Heat Pump Conference, Munich, 375 (1999)
25 S. Iyoki and T. Uemura Rev. Int. Froid, 13, May, 191 (1990)   DOI
26 B. Mohanty, Ph. D. Dissertation, I.N.P.T, Toulouse, France (1985)
27 P. D. Dan and S. S. Murthy, Int. J. Energy Research, 13, 1 (1989)   DOI   ScienceOn
28 S. T. Munkejord, H. S. Mahelum, and P. Neksa, Int. J. of Refrigeration, 25, 471 (2002)   DOI   ScienceOn
29 W. L. Cheng, K. Houda, P. Hu, and T. Kashiwagi, Applied Thermal Engineering, 24, 281 (2004)   DOI   ScienceOn
30 B. Agnew, A. Alaktiwi, A. Anderson, and I. Potts, Applied Thermal Engineering, 24, 150l (2004)   DOI   ScienceOn
31 G. Grossman, Int. J. Heat Mass Transfer, 26, 357 (1983)   DOI   ScienceOn
32 D. Arzoz. P. Rodriuuez, and M. Izquierdo, Applied Thermal Engineering, 25, 797 (2005)   DOI   ScienceOn
33 S. H. Won and W. Y. Lee, Heat Recovery System & CHP, 11 41 (1991)   DOI   ScienceOn
34 M. B. E. Siddig, F. A. Watson, and F. A. Holland, Chem. Eng. Res. Dev., 61, 283 (1983)
35 G. S. Grover, M. A. R. Eisa, and F. A. Holland, Heat Recovery System & CHP, 8, 33 (1988)   DOI   ScienceOn
36 D. Daiguji, E. Haihara and T. Saito, Int. J. Heat Mass Transfer., 40, 1743 (1997)   DOI   ScienceOn
37 A. Jemqvist, K Abrahamsson, and G. Aly, Heat Recovery Systems & CHP, 12, 469 (1992)   DOI   ScienceOn
38 E. P. Whitlow, Gas Age, 30, October, 19 (1958)
39 M. Izquierdo and S. Aroca, Int. J. Energy Research, 14, 281 (1990)   DOI
40 K. P. Tyagi, Heat Recovery System & CHP, 12, 283 (1992)   DOI   ScienceOn
41 S. Gabsi, Ph. D. Dissertation, I.N.P.T, Toulouse, France (1981)
42 M. Youbi-ldrissi, J. Bonjour, and F. Meunier, Applied Thermal Engineering, 25, 2827 (2005)   DOI   ScienceOn
43 O. Levenspiel, Chemical Reaction Engineering, 3ed. W. Anderson, 3, 293, John wiley and Sons, New York (1999)
44 Z, Zhnegguo, X. Tao, and F. Xiaoming, Applied Thermal Engineering, 24, 2293 (2004)   DOI   ScienceOn