Browse > Article

A Study on Improvement of Performance of Absorber in Absorption Heat Pump  

Min, Byong-Hun (Department of Chemical & Biochemical Engineering, University of Suwon)
Publication Information
Applied Chemistry for Engineering / v.19, no.3, 2008 , pp. 338-344 More about this Journal
Abstract
The improvement of energy conservation is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy-saving in this respect. Absorption heat pump is a means to upgrade waste heat without the addition of extra thermal energy. The higher performance of absorber is of great importance for absorption heat pump cycle. In this study, in order to improve the performance of absorber, the absorber of tangential feed of a liquid phase with spiral tube has been investigated using methanol-glycerine as a working fluid. The spiral tube and tangential feeding generate the turbulence into the liquid flow while increasing the mass and heat transfer coefficients. The simultaneous heat and mass transfer were found to take place in a liquid turbulent film in the absorber with the spiral tube during the process of gas absorption. By calculating mass and heat transfer coefficients by measurement of the concentration and the temperature of each position in the absorber, the entrance was found to be more effective in enhancing mass and heat transfer.
Keywords
absorption heat pump; absorber; spiral tube; methanol-glycerine; tangential feeding; simultaneous heat and mass trassfer;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 P. Le Goff and B. Schwarzer, Entropie, 156, 5 (1990)
2 M. B. E. Siddig, F. A. Watson, and F. A. Holland, Chem. Eng. Res. Dev., 61, 283 (1983)
3 S. T. Munkejord, H. S. Mahelum, and P. Neksa, Int. J. of Refrigeration, 25, 471 (2002)   DOI   ScienceOn
4 A. Jemqvist and G. Aly, Heat Recovery System & CHP, 12, 469 (1992)   DOI   ScienceOn
5 P. D. Dan and S. S. Murthy, Int. J. of Energy Res., 13, 1 (1989)   DOI   ScienceOn
6 Z, Zhnegguo, X. Tao, and F. Xiaoming, Appl. Thermal Eng., 24, 2293 (2004)   DOI   ScienceOn
7 D. Arzoz. P. Rodriuuez, and M. Izquierdo, Appl. Thermal Eng., 25, 797 (2005)   DOI   ScienceOn
8 R. E. Treybal, Mass-Transfer Operations, ed. J. J. Carberry, J. R. Fair, and J. Wei, 3, 313, McGraw Hill, Singapore (1980)
9 G. S. Grover, M. A. R. Eisa, and F. A. Holland, Heat Recovery System & CHP, 8, 33 (1988)
10 A. Jemqvist, K. Abrahamsson, and G. Aly, Heat Recovery Systems & CHP, 12, 469 (1992)   DOI   ScienceOn
11 E. Hihara and T. Saito, Int. J. Refrigerat, 16, 339 (1993)   DOI   ScienceOn
12 K. R. Patil, M. A. R. Eisa, and M. N. Kim, Appl. Energy, 34, 99 (1989)   DOI   ScienceOn
13 E. P. Whitlow, Gas Age, 30, October, 19 (1958)
14 S. Iyoki and T. Uemura Rev. Int. Froid, 13, May, 191 (1990)
15 F. Ziegler and P. Riesch, Heat Recovery System & CHP, 13, 147 (1993)
16 M. Youbi-Idrissi, J. Bonjour, and F. Meunier, Appl. Thermal Eng., 25, 2827 (2005)   DOI   ScienceOn
17 G. Cacciola, G. Restuccia, and G. Rizzo, Heat Recovery System & CHP, 10, 177 (1990)   DOI   ScienceOn
18 F. Ziegler and G. Grossman, Int. J. Refrigerat, 19, 301 (1996)   DOI   ScienceOn
19 K. Guo, B. Shu, and L. Chen, J. Eng. Thermophys, 15, 408 (1996)
20 R. J. Romero, L. Guillen, and I. Pilatowski, Appl. Thermal Eng., 24, 867 (2005)
21 L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, and A. G. Kulakov, Appl. Thermal Eng., 24, 1893 (2004)   DOI   ScienceOn
22 W. J. F. Setterwall, Chem. Eng. Sci., 50, 3077 (1995)   DOI   ScienceOn
23 S. H. Won and W. Y. Lee, Heat Recovery System & CHP, 11, 41 (1991)   DOI   ScienceOn
24 D. Daiguji, E. Haihara, and T. Saito, Int. J. Heat Mass Transfer, 40, 1743 (1997)   DOI   ScienceOn
25 G. Grossman, Int. J. Heat Mass Transfer, 26, 357 (1983)   DOI   ScienceOn
26 F. Ziegler and P. Riesch, Heat Recovery System & CHP, 13, 147 (1993)   DOI   ScienceOn
27 M. Izquierdo and S. Aroca, Int. J. of Energy Research, 14, 281 (1990)   DOI
28 M. A. R. Eisa and R. Best, Appl. Energy, 28, 69 (1987)   DOI   ScienceOn
29 N. Bennani and D. Prevost, Heat Recovery System & CHP, 9, 257 (1989)   DOI   ScienceOn
30 W. L. Cheng, K. Houda, P. Hu, and T. Kashiwagi, Appl. Thermal Eng., 24, 281 (2004)   DOI   ScienceOn
31 E. Lepinasse, M. Marion, and V. Gotez, Appl. Thermal Eng., 21, 1251 (2001)   DOI   ScienceOn
32 B. Mohanty, Ph. D. Dissertation, I.N.P.T, Toulouse, France (1985)
33 B. Agnew, A. Alaktiwi, A. Anderson, and I. Potts, Appl. Thermal Eng., 24, 1501 (2004)   DOI   ScienceOn
34 S. Gabsi, Ph. D. Dissertation, I.N.P.T, Toulouse, France (1981)
35 R. Matsuda, 3rd IEA Heat Pump Conference, Tokyo (1990)
36 J. B. Castro, J. M. Corberian, and J. Gonzalvez, Appl. Thermal Eng., 25, 2450 (2005)   DOI   ScienceOn
37 C. Kren, H. M. Hellmann, and F. Ziegler, Proceeding of the International Sorption Heat Pump Conference, Munich, 375 (1999)