• Title/Summary/Keyword: chemical fine structure

Search Result 244, Processing Time 0.031 seconds

Hydrogen Sensing Property of Porous Carbon Nanofibers by Controlling Pore Structure and Depositing Pt Catalyst (기공구조 조절 및 Pt촉매 증착을 이용한 다공성 탄소나노섬유의 수소가스 감지특성)

  • Kang, Seok Chang;Im, Ji Sun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.243-248
    • /
    • 2011
  • Pt deposited porous carbon nanofibers was prepared as a highly sensitive material of hydrogen gas sensor operating at room temperature. Nanofibers was obtained by electrospinning method using polyacrylonitrile as a carbon precursor and then thermally treated for carbon nanofibers. Chemical activation of carbon nanofibers was carried out to enlarge specific surface area up to $2093m^2/g$. Sputtered Pt layer was uniformly distributed keeping the original shape of carbon nanofibers. The hydrogen gas sensing time and sensitivity were improved based on effects of high specific surface area, micropore structure and deposited Pt catalyst.

Combustion Generated Fine Particles, Trace Metal Speciation, and Health Effects

  • Linak, William P.
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.195-195
    • /
    • 2003
  • Combustion generated fine particles, defined as those with aerodynamic diameters less than 2.5 m, have come under increased regulatory scrutiny because of suspected links to adverse human health effects. Transition metals are of particular interest due to the results of a number of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal, residual fuel oils, sewage sludge, and other combusted fuels and wastes. This lecture will review results from multi-di sciplinary studies being conducted at EPA and elsewhere examining the physical, chemical, and toxicological characteristics of combustion generated particles. The research describes how collaborative work between combustion engineers and health scientists can provide insight on how combustion processes affect particle properties and subsequent health effects as measured by a combination of in-vitro and in-vivo studies using a variety of animal models. The focus of this lecture is on the interdisciplinary approach required to address the problem. Difficulties are discussed. Engineering aspects involved in this approach are described in detail. Physical and chemical characterizations are performed using a variety of analytical approaches including new techniques of x-ray absorption fine structure (XAFS) spectroscopy and x-ray absorption near-edge structure (XANES) deconvolution of these spectra to gather metal speciation information.

  • PDF

Fuctionalization of SBA-16 Mesoporous Materials with Cobalt(III) Cage Amine Complex

  • Han, Sang-Cheol;Sujandi, Sujandi;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1381-1384
    • /
    • 2005
  • Surface modification of tridimensional cubic mesoporous silica, SBA-16, was investigated with pendant arm functionalized cobalt diaminosarcophagine (diAMsar) cage complex which covalently grafted onto the silica surface through the silication with sylanol group. The spectroscopic results showed that the mesoporous structure was preserved under the $[Co(diAMsar)]^{3+}$ grafting reaction condition. Successful grafting prevented the cobalt diAMsar cage from leaching out from the SBA-16 support.

Synthesis and Characterization of CNTs/Metal/Al2O3 Nanocomposite Powders by Thermal CVD (열 CVD법에 의한 CNTs/Metal/Al2O3 나노복합분말의 합성 및 특성)

  • Choa Yong-Ho;Yoo Seung-Hwa;Yang Jae-Kyo;Oh Sung-Tag;Kang Sung-Goon
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.146-150
    • /
    • 2005
  • An optimum route to synthesize $Al_2O_3$-based composite powders with homogeneous dispersion of carbon nanotubes (CNTs) was investigated. CNTs/Metal/$Al_2O_3$ nanocomposite powders were fabricated by thermal chemical vapor deposition of $C_2H_2$ gas over metal/$Al_2O_3$ nanocomposite catalyst prepared by selective reduction of metal oxide/$Al_2O_3$ powders. The FT-Raman spectroscopy analysis revealed that the CNTs have single- and multi-walled structure. The CNTs with the diameter of 25-43 nm were homogeneously distributed in the metal/$Al_2O_3$ powders, and their characteristics were strongly affected by a kind of metal catalyst and catalyst size. The experimental results show that the composite powder with required size and dispersion of CNTs can be realized by control of synthesis condition.

Polystyrene-b-poly(oligo(ethylene oxide) Monomethyl Ether Methacrylate)-b-polystyrene Triblock Copolymers as Potential Carriers for Hydrophobic Drugs

  • You, Qianqian;Chang, Haibo;Guo, Qipeng;Zhang, Yudong;Zhang, Puyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.558-564
    • /
    • 2013
  • A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b-polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance ($^1H$ NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore, the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b-POEOMA-b-PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers

  • Bai, Byong-Chol;Kim, Jong-Gu;Naik, Mehraj-Ud-Din;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2011
  • Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by electrospinning. The effect of metal content on the hydrogen storage capacity of the nanofibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the development of an improved hydrogen storage system, the optimum conditions for the production of metalized CNFs were investigated by characterizing the specific surface areas, pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large pore volume and specific surface area in the samples. This is attributable to the optimized pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may provide better sites for hydrogen adsorption than do current adsorbates.

Fabrication and Characterization of Porous Non-Woven Carbon Based Highly Sensitive Gas Sensors Derived by Magnesium Oxide

  • Kim, Yesol;Cho, Seho;Lee, Sungho;Lee, Young-Seak
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • Nanoporous non-woven carbon fibers for a gas sensor were prepared from a pitch/polyacrylonitrile (PAN) mixed solution through an electrospinning process and their gas-sensing properties were investigated. In order to create nanoscale pores, magnesium oxide (MgO) powders were added as a pore-forming agent during the mixing of these carbon precursors. The prepared nanoporous carbon fibers derived from the MgO pore-forming agent were characterized by scanning electron microscopy (SEM), $N_2$-adsorption isotherms, and a gas-sensing analysis. The SEM images showed that the MgO powders affected the viscosity of the pitch/PAN solution, which led to the production of beaded fibers. The specific surface area of carbon fibers increased from 2.0 to $763.2m^2/g$ when using this method. The template method therefore improved the porous structure, which allows for more efficient gas adsorption. The sensing ability and the response time for the NO gas adsorption were improved by the increased surface area and micropore fraction. In conclusion, the carbon fibers with high micropore fractions created through the use of MgO as a pore-forming agent exhibited improved NO gas sensitivity.

Chemical Compositio and Structure of Evaporated Alloying Element by Laser Welding Condition (레이저 용접조건에 따른 증발된 합금원소의 조성과 구조의 변화)

  • 조상명
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.523-532
    • /
    • 1999
  • This study is aimed to obtain fundamental knowledge of pulse laser welding phenomena the authors investigated the structure and composition of evaporated particles of Al alloys in air and in the Ar atmosphere during pulsed laser welding. The ultra-fine particles of 5 to 100nm diameter in a globular or irregular shape were formed in laser-induced plasma and the main structure was $MgAl_2O_4$ The composition of particles was ifferent depending on the power density of a laser beam; namely under the low power density conditions magnesium was predominant in the parti-cles while aluminium content increased with an increase in the power density. These results were attributed to evaporation phenomena of metals with different boiling points and latent heats of vaporization. On the other hand the number density of laser-induced plasma species was obtained by Saha's equation. it was confirmed that the number density depends upon the plasma tempera-ture and total pressures.

  • PDF

Technology Trends for Photoresist and Research on Photo Acid Generator for Chemical Amplified Photoresist (포토 레지스트의 기술 동향과 화학 증폭형 포토레지스트에서의 광산 발생제의 연구)

  • Kim, Sung-Hoon;Kim, Sang-Tae
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.252-264
    • /
    • 2009
  • Lithographic data obtained from PHS(polyhydroxy styrene) having various functionalities were investigated by using a photoacid generator based on diazo and onium type. Chemically amplified photoresist based on the KrF type photoresist was developed by using a photoacid generator and multi-functional resin. Thermal stability for the photoacid generator showed that the increase of loading amount of photoacid generator resulted in the decrease of glass transintion temperature (Tg). The photoacid generators having methyl, ethyl, or propyl group in their cationic structure produced T-top structure in pattern profile due to the effect of acid diffusion during the generation of acid in the resist. The increase of carbon chain length in the anionic structure of photoacid generators resulted in lower pattern resolution due to the interruption of acid diffusion.

  • PDF

Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil (비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • X-ray absorption fine structure (XAFS) analysis using X-ray absorption spectroscopy is being applied as a state-of-the-art method in a wide range of disciplines. This review article summarizes the overall procedure of XAFS analysis from the preparation of soil samples to the analysis of data in X-ray absorption near edge structure (XANES) region and extended Xray absorption fine structure (EXAFS) region. The previous studies on application of XANES and EXAFS techniques in environmental soil science field are discussed and classified them according to metal(loid)s (As, Cd, Cu, Ni, Pb, and Zn). A significant number of previous studies of XAFS application in the environmental soil science field have focused on the identification of Pb chemical species in soil. Moreover, XANES and EXAFS techniques have been widely used to investigate the contamination source via identification of metal species. Similarly, these techniques were applied to identify the mechanisms of metal stabilization in soil after application of various amendments, phytoremediation, etc.