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Abstract
Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by 
electrospinning. The effect of metal content on the hydrogen storage capacity of the nano-
fibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen 
adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the 
development of an improved hydrogen storage system, the optimum conditions for the pro-
duction of metalized CNFs were investigated by characterizing the specific surface areas, 
pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-
Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large 
pore volume and specific surface area in the samples. This is attributable to the optimized 
pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may 
provide better sites for hydrogen adsorption than do current adsorbates.
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1. Introduction

Carbon nanostructures are currently among the best options for hydrogen storage due to 
their high surface area, low density, low cost, and facile handling [1-3]. In particular, carbon 
nanomaterials, such as carbon nanotubes (CNTs), fullerenes, and carbon nanofibers (CNFs), 
have attracted much attention because of their large surface area, and they have been consid-
ered good storage materials for molecular hydrogen. In addition to carbon nanostructures, 
several chemical hydrides (based on the light elements lithium, sodium and magnesium) 
have also been explored as potential hydrogen-storage materials [4-7]. However, these ma-
terials have proven difficult to handle and possess certain disadvantages when compared to 
lighter carbon nanostructures [8].

CNFs have generally been prepared using techniques such as vapor growth and plasma-
enhanced chemical vapor growth [9,10]. However, these methods of synthesizing CNFs in-
volve complicated and expensive processes. CNFs can also be produced by various thermal 
treatments and subsequent electrospinning of organic precursors, such as polyaniline, poly-
ethylene oxide, polycaprolactone, polyacrylonitrile and similar polymer fibers. Electrospin-
ning is an easy and efficient fabrication technique for nano- and microscale fibers [11]. Many 
studies have demonstrated that nanoscale carbon fibers with sizes ranging from 100 nm to a 
few microns can be produced from organic precursors using electrospinning.

In recent years, CNFs with various modifications have been studied for their utility as nitro-
gen and hydrogen adsorbents [12]. CNFs with high specific surface area and small pore sizes 
have been reported to adsorb significant amounts of carbon dioxide and hydrogen [13,14]. 
They have also been reported to absorb organic alcohols [15] under various experimental 
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to 280oC at a heating rate of 1oC min-1. The oxidized fibers were 
then carbonized, which involves thermally treating the samples 
by heating them to 1050oC at a heating rate of 10oC min-1 in an in-
ert atmosphere of nitrogen. The carbonization step is very impor-
tant for obtaining a carbon mass from the precursors used in the 
fiber preparation. Carbonization was performed in an automated 
furnace equipped with a steel pipe that was placed in the center 
of the furnace chamber. The pipe was open at both ends and was 
used as the inlet and outlet for the nitrogen gas. The sample was 
kept in a ceramic boat and placed into the steel pipe, both ends 
of which were protected by the inlet and outlet flows of nitrogen. 
The sample was held at 1050oC for 1 h, and the completion of the 
heat treatment required several hours to one day. 

2.4 Chemical activation using potassium hy-
droxide

A potassium hydroxide (KOH) solution (8 M, 200 mL) was 
used as the chemical activation agent. The samples (2-3 g) of the 
CNFs and the CNFs with the embedded metal (CNF-M; M = 
Ti or Mn) were immersed in the KOH solution. To immerse the 
samples uniformly, a shaker apparatus (SK-300; JEIO TECH, 
Korea) was used at 70 rpm for 10 h. The wet CNFs and CNF-Ms 
were placed in an alumina boat in a steel pipe during chemical 
activation, and activation was conducted at 750oC for 3 h in a 
nitrogen atmosphere [16]. The heating rate was 5oC min-1; the 
nitrogen feed rate was 40 mL/min. Next, the activated electro-
spun CNFs were washed with distilled water several times to 
ensure that all of the potassium was removed, which was veri-
fied by analyzing the pH of the filtrate after each washing. These 
samples were then dried at 100-110oC overnight.

2.5 Characterization

The surface morphology of the prepared samples was inves-
tigated using field-emission scanning electron microscopy (FE-
SEM, Hitachi S-5500; Hitachi, Japan). The samples were exam-
ined without any of the coatings that are usually used in FE-SEM 
measurements. X-ray photoelectron spectroscopy (XPS) spectra 
of the samples were obtained using a MultiLab 2000 spectrom-
eter (Thermo Electron Corporation, UK) to determine the states 
of the elements that were present in the samples. To study the tex-
tural properties of the samples, Brunauer-Emmett-Teller (BET) 
measurements were performed using a Micromeritics ASAP 
2020 instrument (USA). The measurements were performed at 
77 K, with nitrogen as the adsorbent gas. To investigate the hy-
drogen adsorption isotherms of the prepared samples at 303 K 
and 9 MPa of hydrogen pressure, a pressure-composition-tem-
perature apparatus (MiraeSI Co., Korea) was used.

3. Results and Discussion

3.1 Structure and morphology of CNF

Fig. 1 presents FE-SEM images of the raw CNF, CNF-Ti and 
CNF-Mn indicated as (a, b), (c, d), and (e, f), respectively. CNFs 
with diameters as small as 200-500 nanometers were observed 
(Fig. 1a), and the maximum diameter of the nanofibers within 

conditions. Following previous research describing the improved 
properties of CNFs and their potential as a hydrogen-storage me-
dium, researchers have introduced various metals and metal pre-
cursors into CNFs. The work presented herein focuses on CNFs 
that were modified with embedded Ti and Mn. These metals were 
selected for their high dispersion, solubility, affinity for hydrogen 
and corresponding ease of hydrogen dissociation under ambient 
conditions. The characteristics of these metals are useful when 
they are embedded into carbon nanomaterials and may ultimately 
improve the hydrogen adsorption properties of CNFs. In these 
materials, hydrogen storage is achieved either by the dissociation 
of hydrogen molecules into atomic hydrogen or by facilitated hy-
drogen physisorption onto carbon surfaces via a spillover mecha-
nism, as has been reported in many previous studies.

This study investigated the effects of these metals on the mor-
phological and hydrogen-storage properties of CNFs that were 
activated with an alkoxide at high temperatures. Compared to the 
metals that are involved in composite formation or are bonded to 
carbon or oxygen, the effects of metals on some CNFs were evi-
denced by the increasing adsorption capacities of these materials. 

2. Experimental 

2.1 Raw materials

Polyacrylonitrile (PAN) and 99.5% N,N-dimethylformamide 
(DMF) were purchased from Sigma-Aldrich and were used 
without further purification. For the metal catalysts, 99+% man-
ganese powder and titanium oxysulfate (TiOSO4) were obtained 
from Sigma-Aldrich (USA). A homogenous solution of 12 wt% 
PAN in DMF was prepared by mixing the materials and stirring 
for 5 to 10 h at 70oC. Each metal catalyst (5 wt% metal) was 
dissolved in DMF for 3 hours at 50oC with constant stirring. The 
prepared catalyst solution was slowly added to the PAN solution 
with continuous stirring to obtain a homogenous solution.

2.2 Preparation of electrospun CNFs

The CNFs were prepared using electrospinning with a sophis-
ticated current controller that was capable of producing 60 kV; 
the electrospun fiber collector was held at a fixed distance from 
the tip (ranging from 10-15 cm). The tip and collector faced one 
another. The current passing through the circuit generates an 
electronic field, which produces small fibers that emanate from 
the tip of a syringe containing the polymer solution.

The metal/PAN-based fibers (in which the metals are Mn and 
Ti) were prepared by electrospinning a polymer/metal precursor 
solution containing both the metal (5 wt%) and a 12 wt% PAN 
polymer solution in DMF. The amount of the metal precursor 
used was limited to 5 wt% in all cases. The ratio of the PAN 
polymer and the metal content in the electrospun solution was 
maintained at approximately 16:1.

2.3 Heat treatment and activation of CNFs

All of the electrospun samples underwent thermal treatment 
at various temperatures. To stabilize or oxidize the prepared fi-
bers, the samples were first placed in an oven and heated in air 
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in the carbon or oxygen binding energies caused by metal modifi-
cation, allowing the deduction of the incorporation scheme of the 
metal atoms. A core-level analysis of all of the samples was per-
formed using XPS; the results are shown in Fig. 2. The XPS spec-
trum of the raw CNFs exhibited two major states, C1s and O1s, as 
indicated in trace ‘a’ of Fig. 2. However, the other CNFs exhibited 
Ti2p and Mn2p states (Figs. 2b and c, respectively), in addition to 
the C1s and O1s states. The binding energy of the C1s peak of the 
CNFs was 284.5 eV and was not altered by titanium modification. 
The O1s peak of the CNF-Ti material was broad and had a bind-
ing energy of 532.0 eV. This result denotes the adsorption of Ti by 
hydroxyl groups [21] that are believed to result from the reaction 
of carbon with atmospheric moisture. The binding energy of O1s 
reveals that there was negligible or nonexistent Ti-O bonding in 
the CNF-Ti material, but the binding energy of the oxygen atoms 
bonded to the metal atoms is 530.5 eV [22]. Additionally, the low-
energy side of the O1s peak increased after manganese insertion 
(Fig. 2c); this suggests that a fraction of the oxygen atoms was 
bonded to the manganese atoms in the Mn-O bonds.

3.3 Textural property analysis

Fig. 3 presents the adsorption/desorption isotherms of N2 at 
77 K for the CNF, CNF-Ti, and CNF-Mn materials. All of the 
isotherms followed Type-IV classification curves, which are 
typical of porous adsorbents that possess pores with diameters 
in the range of approximately 15-1000 angstroms. The slope 
increase at elevated pressures indicates an increased uptake of 
nitrogen as the pores were filled. The knee of the Type-IV iso-
therm generally occurs near the completion of the first mono-
layer. Adsorption onto the CNF-Ti material was complete at a 
low relative pressure, (P/P0 < 0.03), and the isotherm exhibited a 
sharply inclined knee at P/P0 < 0.03. This narrow knee indicates 
that the sample has a microporous size distribution, which is 
clearly shown in Fig. 4. It is also important to note that, in ad-
dition to micropores, all of the samples possessed mesopores 
(Fig. 4). These isotherms correspond to the International Union 
of Pure and Applied Chemistry (IUPAC) Type-IV classifica-
tion, which is associated with the simultaneous presence of both 

the measured area was approximately 1 micron (Fig. 1b). CNFs 
with a smaller diameter have a higher specific surface area than 
larger fibers [17]; this has been reported as an important fac-
tor for achieving improved hydrogen storage capacity in carbon 
nanomaterials [13,14,18]. Metal insertion into the CNTs can 
lead to the degradation of the carbon surface or wall via catalytic 
effects at high temperatures [19]. In the case of the CNFs treated 
with Ti, surface imaging after the treatment showed that the tita-
nium traces were uniformly distributed along the CNF surfaces, 
with no aggregation. The particle size in the metal layer on the 
CNFs was observed to be approximately 10-30 nm (Fig. 1c). 
When using titanium oxysulfate as a dispersant, a good distri-
bution of Ti particles was observed, which was likely due to 
the high solubility and hydrophilicity of the titanium precursor, 
which enables the efficient distribution of the Ti particles.

Additionally, other metallic precursors were selected for CNF 
modification due to their high solubility or dispersion and good 
affinity for hydrogen. These materials were also observed by 
FE-SEM, as shown in Fig. 1 for Mn (e and f). The Mn metal 
particles on the CNFs were observed to be approximately 20-40 
nm in diameter, and some of the particles formed aggregates that 
were larger than 100 nm, the Mn-only occupied regions on the 
CNF surfaces that were more favorable for Mn particle adsorp-
tion (Fig. 1e). In addition, some Mn particle aggregation was ob-
served. This aggregation may be due to the formation of oxides 
on the CNF surfaces [20].

3.2 Elemental analysis

XPS is an effective tool for determining the chemical states of 
the modified metal atoms on the CNFs. XPS can reveal changes 

Fig. 1. Field emission-scanning electron microscopy images of activated 
carbon nanofibers (CNFs) with or without metal additives: (a, b) CNF, (c, d) 
CNF-Ti, and (e, f ) CNF-Mn.

Fig. 2. X-ray photoelectron spectroscopy spectra of (a) CNFs, (b) CNF-Ti, 
and (c) CNF-Mn. CNF: carbon nanofiber.
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CNF-Ti material was especially related to the activation of the 
sample at high temperatures using KOH as activating agent and 
highly dispersed titanium metal on the electrospun fibers [24]. 
Comparing the isotherms of the CNF-Ti and CNF-Mn materials 
to those of the CNF materials revealed that the first two were 
superior with respect to the pore properties listed in Table 1. The 
knee usually occurs near the completion of the first adsorbed 
monolayer, and, with increasing pressure, the second and higher 
layers are completed until saturation is reached as the number of 
adsorbed layers becomes infinite. Similar results were observed 
in the pore-size distribution measurements, indicating the com-
pletion of adsorption in the pores. This pore-size distribution 
was analyzed using the Howard-Kawazoe method, with results 
as illustrated in Fig. 4, which reveals the clear differences in the 
pore characteristics of the CNF-Ti, CNF-Mn, and CNF samples.

3.4 Hydrogen storage capacity

Fig. 5 presents the hydrogen adsorption isotherms of the pre-
pared samples. As expected, the maximum hydrogen storage 
capacity was observed in the CNF-Ti sample, followed by the 
CNF-Mn, and CNF samples, in that order. The CNF-Ti and CNF-
Mn samples may have higher storage capacities because these 
materials have higher specific surface areas and larger micropore 
volumes than do the CNF materials (Table 1). The free metals in 
the CNF-Ti and CNF-Mn samples can also facilitate hydrogen 
dissociation onto the CNF surface via a spillover mechanism or 
can drive the hydrogen molecules into the pores [25]. The ob-
served hydrogen storage capacities of the CNF-Ti and CNF-Mn 
samples were approximately 1.6 wt% and 1.1 wt. %, respectively. 
For the raw CNF samples, the storage capacity was 0.6 wt% un-
der similar conditions. The storage capacity of the CNF-Ti sample 
was much greater than that of the raw CNF sample, both with or 
without activation; this result is similar to what our group previ-
ously reported [26]. The BET results suggest that the CNF-Ti and 
CNF-Mn samples had greater micropore volumes and higher spe-
cific surface areas. This observation corresponds to the enhanced 
hydrogen storage capacities of these materials. The micropore 
volume of the CNF samples was much lower than those of the 
CNF-Ti and CNF-Mn samples, reflecting the fact that the CNF 
sample only adsorbed a small amount of hydrogen under similar 
conditions. Panella et al. [27] reported that the hydrogen storage 
capacities of carbon materials are proportional to their micropore 
volumes. However, it has previously been reported [28,29] that 
specific surface areas and micropore volumes are not necessar-
ily the primary markers for greater hydrogen storage capacity. In 
addition, it is possible that the investigated metals play intermedi-

micropores and mesopores. There was no effect on the curve 
once the micropores were filled at a low relative pressure (P/P0 
< 0.03); however, adsorption became significant on the surfaces 
containing the mesopores, as indicated by the slope at a higher 
relative pressure [23]. During N2 adsorption/desorption, the 
presence of micropores is believed to provide an increased pore 
volume compared to that of mesopores and macropores. This 
pore volume corresponds to a maximum volume similar to that 
of the CNF-Ti sample. The narrow pore-size distribution in the 

Fig. 3. Nitrogen-adsorption curves of the samples at 77 K. CNF: carbon 
nanofiber.

Fig. 4. Pore-size distributions of the samples. CNF: carbon nanofiber.

Table 1. Comparative pore properties of the prepared samples

Sample Surface area
(m2/g)

Pore volumea

(cc/g) Pore width (nm) Micropore
volume (cc/g)

Total pore volume 
(cc/g)

Average pore 
diameter (nm)

CNF 1038 0.490 1.36 0.10 0.36 3.13

CNF-Mn 1452 0.780 1.27 0.32 0.87 2.41

CNF-Ti 1574 0.854 1.27 0.40 1.04 2.64

CNF: carbon nanofiber.
aVolume up to a 2-nm pore width.
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