Browse > Article
http://dx.doi.org/10.5714/CL.2011.12.3.171

The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers  

Bai, Byong-Chol (Department of Green Energy Technology, Chungnam National University)
Kim, Jong-Gu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Naik, Mehraj-Ud-Din (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Im, Ji-Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
Lee, Young-Seak (Department of Green Energy Technology, Chungnam National University)
Publication Information
Carbon letters / v.12, no.3, 2011 , pp. 171-176 More about this Journal
Abstract
Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by electrospinning. The effect of metal content on the hydrogen storage capacity of the nanofibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the development of an improved hydrogen storage system, the optimum conditions for the production of metalized CNFs were investigated by characterizing the specific surface areas, pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large pore volume and specific surface area in the samples. This is attributable to the optimized pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may provide better sites for hydrogen adsorption than do current adsorbates.
Keywords
carbon nanofibers; hydrogen storage; porosity; metal catalysis; electrospinning;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Im JS, Park SJ, Lee YS. Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage. Mater Res Bull, 44, 1871 (2009). http://dx.doi.org/10.1016/j.materresbull.2009.05.010.   DOI   ScienceOn
2 Panella B, Hirscher M, Roth S. Hydrogen adsorption in different carbon nanostructures. Carbon, 43, 2209 (2005). http://dx.doi.org/10.1016/j.carbon.2005.03.037.   DOI   ScienceOn
3 Browning DJ, Gerrard ML, Lakeman JB, Mellor IM, Mortimer RJ, Turpin MC. Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible reaction mechanism. Nano Lett, 2, 201 (2002). http://dx.doi.org/10.1021/nl015576g.   DOI   ScienceOn
4 Lueking AD, Pan L, Narayanan DL, Clifford CEB. Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage. J Phys Chem B, 109, 12710 (2005). http://dx.doi.org/10.1021/jp0512199.   DOI   ScienceOn
5 Park C, Engel ES, Crowe A, Gilbert TR, Rodriguez NM. Use of carbon nanofibers in the removal of organic solvents from water. Langmuir, 16, 8050 (2000). http://dx.doi.org/10.1021/la9916068.   DOI   ScienceOn
6 Kim BJ, Lee YS, Park SJ. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. J Colloid Interface Sci, 318, 530 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.018.   DOI   ScienceOn
7 Oh GY, Ju YW, Kim MY, Jung HR, Kim HJ, Lee WJ. Adsorption of toluene on carbon nanofibers prepared by electrospinning. Sci Total Environ, 393, 341 (2008). http://dx.doi.org/10.1016/j.scitotenv.2008.01.005.   DOI   ScienceOn
8 Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.024.   DOI   ScienceOn
9 Chuvilin A, Khlobystov AN, Obergfell D, Haluska M, Yang S, Roth S, Kaiser U. Observations of chemical reactions at the atomic scale: dynamics of metal-mediated fullerene coalescence and nanotube rupture. Angew Chem Int Ed, 49, 193 (2010). http://dx.doi.org/10.1002/anie.200902243.   DOI   ScienceOn
10 Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon, 45, 785 (2007). http://dx.doi.org/10.1016/j.carbon.2006.11.019.   DOI   ScienceOn
11 Ryoo MW, Seo G. Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Res, 37, 1527 (2003). http://dx.doi.org/10.1016/S0043-1354(02)00531-6.   DOI   ScienceOn
12 Kumar PM, Badrinarayanan S, Sastry M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 358, 122 (2000). http://dx.doi.org/10.1016/S0040-6090(99)00722-1.   DOI   ScienceOn
13 Chen P, Xiong Z, Luo J, Lin J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature, 420, 302 (2002). http://dx.doi.org/10.1038/nature01210.   DOI   ScienceOn
14 Naik MUD, Rather SU, So CS, Hwang SW, Kim AR, Nahm KS. Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. Int J Hydrogen Energy, 34, 8937 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.07.003.   DOI   ScienceOn
15 D.K R. Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum, 80, 1084 (2006). http://dx.doi.org/10.1016/j.vacuum.2006.03.030.   DOI   ScienceOn
16 Jung MJ, Kim JW, Im JS, Park SJ, Lee YS. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination. J Ind Eng Chem, 15, 410 (2009). http://dx.doi.org/10.1016/j.jiec.2008.11.001.   DOI   ScienceOn
17 Rodriguez NM. A review of catalytically grown carbon nanofibers. J Mater Res, 8, 3233 (1993). http://dx.doi.org/doi:10.1557/JMR.1993.3233.   DOI
18 Merkulov VI, Melechko AV, Guillorn MA, Simpson ML, Lowndes DH, Whealton JH, Raridon RJ. Controlled alignment of carbon nanofibers in a large-scale synthesis process. Appl Phys Lett, 80, 4816 (2002). http://dx.doi.org/10.1063/1.1487920.   DOI   ScienceOn
19 Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostatics, 35, 151 (1995). http://dx.doi.org/10.1016/0304-3886(95)00041-8.   DOI   ScienceOn
20 Rzepka M, Bauer E, Reichenauer G, Schliermann T, Bernhardt B, Bohmhammel K, Henneberg E, Knoll U, Maneck HE, Braue W. Hydrogen storage capacity of catalytically grown carbon nanofibers. J Phys Chem B, 109, 14979 (2005). http://dx.doi.org/10.1021/jp051371a.   DOI
21 Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027.   DOI   ScienceOn
22 Grochala W, Edwards PP. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev, 104, 1283 (2004). http://dx.doi.org/10.1021/cr030691s.   DOI   ScienceOn
23 Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377 (1997). http://dx.doi.org/10.1038/386377a0.   DOI   ScienceOn
24 Chen P, Wu X, Lin J, Tan KL. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 285, 91 (1999). http://dx.doi.org/10.1126/science.285.5424.91.   DOI   ScienceOn
25 Orimo S, Majer G, Fukunaga T, Zutel A, Schlapbach L, Fujii H. Hydrogen in the mechanically prepared nanostructured graphite. Appl Phys Lett, 75, 3093 (1999). http://dx.doi.org/10.1063/1.125241   DOI
26 Naik MUD, Rather SU, Zacharia R, So CS, Hwang SW, Kim AR, Nahm KS. Comparative study of dehydrogenation of sodium aluminum hydride wet-doped with ScCl3, TiCl3, VCl3, and MnCl2. J Alloys Compd, 471, L16 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.03.093.   DOI   ScienceOn
27 Rather SU, Zacharia R, Hwang SW, Naik MU, Nahm KS. Hyperstoichiometric hydrogen storage in monodispersed palladium nanoparticles. Chem Phys Lett, 438, 78 (2007). http://dx.doi.org/10.1016/j.cplett.2007.02.069.   DOI   ScienceOn
28 Jimenez V, Diaz JA, Sanchez P, Valverde JL, Romero A. Influence of the activation conditions on the porosity development of herringbone carbon nanofibers. Chem Eng J, 155, 931 (2009). http://dx.doi.org/10.1016/j.cej.2009.09.035.   DOI   ScienceOn
29 Im JS, Park SJ, Kim T, Lee YS. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers. Int J Hydrogen Energy, 34, 3382 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.02.047.   DOI   ScienceOn