• Title/Summary/Keyword: charge density

Search Result 1,127, Processing Time 0.03 seconds

The characteristics of MIS BST thin film capacitor

  • Park, Chi-Sun;Kim, In-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.1
    • /
    • pp.38-42
    • /
    • 2001
  • Electric and dielectric(Ba,Sr)$TiO_3$[BST] thin films for emtal-Insulator-Semiconductor(MIS) capacitors have been studied. BST thin films wre deposted on p-Si(100) substrates bythe RF magnetron sputtering with tempratue range of 500~$600^{\circ}C$. The dielectric properties of MIS capacitors consisting of Al/BST/$SiO_2$/Si sandwich structure were evaluated ot redcue the leakage current density. The charge state densities of the MIS capacitors were determined by high frequency (1 MHz) C-V measurement. In order to reduce the leakage current in MIS capacitor, high quality $SiO_2$ layer was deposited on bare p-Si substrate. Depending on the oxygen pressure and substrate temperature both positive and negative polarities of effective oxide charge in the MIS capacitors were evaluated. It is considered that the density of electronic states, generated at the BST/$SiO_2$/p-Si interface due to the asymmetric structure within BST/$SiO_2$/Si structure, and the oxygen vacancy content has influence on the behavior of oxide charge.

  • PDF

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory

  • Lou, Ping;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2553-2556
    • /
    • 2010
  • On the basis of a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, the analytic expression for the effect of ionic size on the diffuse layer potential drop at negative charge densities has been given for the simple 1:1 electrolyte. It is shown that the potential drop across the diffuse layer depends on the size of the ions in the electrolyte. For a given electrolyte concentration and electrode charge density, the diffuse layer potential drop in a small ion system is smaller than that in a large ion system. It is also displayed that the diffuse layer potential drop is always less than the value of the Gouy-Chapman (GC) theory, and the deviation increases as the electrode charge density increases for a given electrolyte concentration. These theoretical results are consistent with the results of the Monte-Carlo simulation [Fawcett and Smagala, Electrochimica Acta 53, 5136 (2008)], which indicates the importance of including steric effects in modeling diffuse layer properties.

Investigation of the Binding Affinity between Styrylquinoline Inhibitors and HIV Integrase Using Calculated Nuclear Quadrupole Coupling Constant (NQCC) Parameters (A Theoretical ab initio Study)

  • Rafiee, Marjan A.;Partoee, Tayyebe
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.208-212
    • /
    • 2011
  • In this work, the calculated nuclear quadrupole coupling constants of $^{17}O$ in some styrylquinoline conformers were presented. The calculations were carried out to find the relationships between the charge distribution of styrylquinolines and their pharmaceutical behavior and to explore the differences among the electronic structures of some conformers of these potent HIV IN inhibitors. Furthermore, the HIV IN inhibitory of R1 and R2 rotamers was compared. On the basis of our results: - Charge density on oxygen atoms of carboxyl moiety has a dominant role in the drug activity. - The a conformer in which a divalent hydrogen atom is a link, has more capability in antiviral drug treatment. - The R1 conformer, as a $Mg^{+2}$ chelating agent, is better than R2 conformer and thus it is more inhibitor of HIV IN.

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.

A Compact Quantum Model for Cylindrical Surrounding Gate MOSFETs using High-k Dielectrics

  • Vimala, P.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.649-654
    • /
    • 2014
  • In this paper, an analytical model for Surrounding Gate (SG) metal-oxide- semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used variational approach for solving the Poission and Schrodinger equations. This model is developed to provide an analytical expression for inversion charge distribution function for all regions of device operation. This expression is used to calculate the other important parameters like inversion charge density, threshold voltage, drain current and gate capacitance. The calculated expressions for the above parameters are simple and accurate. This paper also focuses on the gate tunneling issue associated with high dielectric constant. The validity of this model was checked for the devices with different dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.

Nanostructured Ni-Mn double hydroxide for high capacitance supercapacitor application

  • Pujari, Rahul B.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2021
  • Recently, transition-metal-based hydroxide materials have attracted significant attention in various electrochemical applications owing to their low cost, high stability, and versatility in composition and morphology. Among these applications, transition-metal-based hydroxides have exhibited significant potential in supercapacitors owing to their multiple redox states that can considerably enhance the supercapacitance performance. In this study, nanostructured Ni-Mn double hydroxide is directly grown on a conductive substrate using an electrodeposition method. Ni-Mn double hydroxide exhibits excellent electrochemical charge-storage properties in a 1 M KOH electrolyte, such as a specific capacitance of 1364 Fg-1 at a current density of 1 mAcm-2 and a capacitance retention of 94% over 3000 charge-discharge cycles at a current density of 10 mAcm-2. The present work demonstrates a scalable, time-saving, and cost-effective approach for the preparation of Ni-Mn double hydroxide with potential application in high-charge-storage kinetics, which can also be extended for other transition-metal-based double hydroxides.

The Effect of Junction Depth on the Charge Density in $n^+ -p$ junction with Consideration of Position dependent Dielectric Constant ($n^+ -p$ 접합에서 위치함수인 유전율을 고려한 경우 접합깊이가 전하밀도에 미치는 영향)

  • Kim, Choong Won;Han, Baik Hyung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.260-264
    • /
    • 1987
  • We examine the effect of junction depth on the charge density solving numerically the general form of Poisson's equation for Gaussian $n^{+}$-p junctions. We also present an analytical model for the charge diopole due to the variation of the dielectric constant with doping.

  • PDF

Properties of $SiO_2$ film oxidized in $N_2O$ gas ($N_2O$ 가스에서 열산화한 $SiO_2$ 막의 특성)

  • Kim, Dong-Seok;Choi, Hyun-Sik;Seo, Yong-Jin;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.829-831
    • /
    • 1992
  • Ultrathin metal-oxide-semiconductor(MOS) gate dielectrics have been fabricated by conventional thermal oxidation in $N_2O$ ambient. Compared to oxides grown in $O_2$, $N_2O$ oxides exhibit significantly low flatband voltage and small shift in flatband voltage. $N_2O$ oxidation induces a slight decrease in mobile ionic charge density($N_m$), fixed charge density($N_f$) and surface state charge density($N_{ss}$). This study establishes that $N_2O$ oxides may have a great impact on future MOS ULSI technology in which ultrathin gate dielectrics are required.

  • PDF

Interfacial and Flow Properties of Latices for Paper Coating (종이 도공용 라텍스의 계면(界面) 및 유동특성(流動特性)에 관한 연구(硏究))

  • Lee, Yong-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.85-90
    • /
    • 1994
  • The flow properties of binder latices for paper coating were investigated, together with dynamic viscoelastic properties of latex films and electron micrographs of latices, under various conditions. The amphoteric latex, binder pigment latex and anionic latex were used in this work. The amphoteric latex has both anionic and cationic functional group on its surface. The binder-pigment with a core-shell structure has dual functions : plastic pigment and binder. The low shear viscosity of binder latices and clay slurry were measured with Brookfield vis cometer. At low-shear rates. the viscosity decreased with increasing particle size of latex. On the amphoteric latex surface, the carboxyl groups are assumed to be fully dissociated over the region of pH 9~12, but the density of negative groups seems to be increased because of the gradual decrease in the degree of dissociation of amino groups. Since the apparent particle size of latex increases with surface charge, the electroviscous effect can be observed. On the anionic latex surface, the charge density is assumed to be nearly constant above pH 8. However, below pH 8 the coagulation of particles could be observed probably because of the decrease in the charge density.

  • PDF