Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.9.2553

Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory  

Lou, Ping (Department of Chemistry, Sungkyunkwan University)
Lee, Jin-Yong (Department of Chemistry, Sungkyunkwan University)
Publication Information
Abstract
On the basis of a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, the analytic expression for the effect of ionic size on the diffuse layer potential drop at negative charge densities has been given for the simple 1:1 electrolyte. It is shown that the potential drop across the diffuse layer depends on the size of the ions in the electrolyte. For a given electrolyte concentration and electrode charge density, the diffuse layer potential drop in a small ion system is smaller than that in a large ion system. It is also displayed that the diffuse layer potential drop is always less than the value of the Gouy-Chapman (GC) theory, and the deviation increases as the electrode charge density increases for a given electrolyte concentration. These theoretical results are consistent with the results of the Monte-Carlo simulation [Fawcett and Smagala, Electrochimica Acta 53, 5136 (2008)], which indicates the importance of including steric effects in modeling diffuse layer properties.
Keywords
Double layer; Size effect; Potential drop;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Holovko, M.; Badiali, J. P.; di Caprio, D. J. Chem. Phys. 2008, 128, 117102.   DOI
2 Burak, Y.; Andelman, D. J. Chem. Phys. 2001, 114, 3271.   DOI
3 Fawcett, W. R.; Smagala, T. G. Electrochimica Acta 2008, 53, 5136.   DOI
4 Bikerman, J. J. Phil. Mag. 1942, 33, 384.   DOI
5 Dutta, M.; Bagchi, S. N. Indian J. Phys. 1950, 24, 61.
6 Freise, V. Z. Elektrochem. 1952, 56, 822.
7 Wicke, E.; Eigen, M. Z. Elektrochem. 1952, 56, 551.
8 Levine, S.; Bell, G. M. J. Phys. Chem. 1960, 64, 1188.   DOI
9 Iglic, A.; Kralj-Iglic, V. Electrotecnical. Rev. (Slovenia) 1994, 61, 127.
10 Borukhov, I.; Andelman, D.; Orland, H. Phys. Rev. Lett. 1997, 79, 435.   DOI
11 Borukhov, I.; Andelman, D.; Orland, H. Electrochim. Acta 2000, 46, 221.   DOI
12 Manciu, M.; Ruckenstein, E. Langmuir 2002, 18, 5178.   DOI
13 Barbero, G.; Evangelista, L. R.; Olivero, D. J. Appl. Phys. 2000, 87, 2646.   DOI
14 Lue, L. Langmuir 1999, 15, 3726.   DOI
15 Outhwaite, C. W.; Lamperski, S. Condens. Matter Phys. 2001, 4, 739.   DOI
16 Kilic, M. S.; Bazant, M. Z.; Ajdari. A. Phys. Rev. E 2007, 75, 021502.   DOI
17 Bhuiyan, L. B.; Outhwaite, C. W.; Henderson, D. J. Electroanal. Chem. 2007, 607, 54.   DOI
18 Kilic, M. S.; Bazant, M. Z.; Ajdari. A. Phys. Rev. E 2007, 75, 021503.   DOI
19 Kornyshev, A. A. J. Phys. Chem. B 2007, 111, 5545.   DOI
20 Lou, P.; Lee, J. Y. J. Chem. Theory Comput. in press, DOI: 10.1021/ct800375t.   DOI
21 Chapman, D. L. Philos Mag. 1913, 25, 475.   DOI
22 Fawcett, W. R. Liquids, Solutions, and Interfaces; Oxford University Press: Oxford, New York, 2004.
23 Gouy, G. Compt. Rend. 1910, 149, 654.