• Title/Summary/Keyword: characteristic mixed finite element method

Search Result 8, Processing Time 0.027 seconds

RELATIONSHIPS AMONG CHARACTERISTIC FINITE ELEMENT METHODS FOR ADVECTION-DIFFUSION PROBLEMS

  • CHEN, ZHANGXIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • Advection-dominated transport problems possess difficulties in the design of numerical methods for solving them. Because of the hyperbolic nature of advective transport, many characteristic numerical methods have been developed such as the classical characteristic method, the Eulerian-Lagrangian method, the transport diffusion method, the modified method of characteristics, the operator splitting method, the Eulerian-Lagrangian localized adjoint method, the characteristic mixed method, and the Eulerian-Lagrangian mixed discontinuous method. In this paper relationships among these characteristic methods are examined. In particular, we show that these sometimes diverse methods can be given a unified formulation. This paper focuses on characteristic finite element methods. Similar examination can be presented for characteristic finite difference methods.

  • PDF

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.19-34
    • /
    • 2016
  • In this paper, we present a split least-squares characteristic mixed finite element method(MFEM) to get the approximate solutions of the convection dominated Sobolev equations. First, to manage both convection term and time derivative term efficiently, we apply a least-squares characteristic MFEM to get the system of equations in the primal unknown and the flux unknown. Then, we obtain a split least-squares characteristic MFEM to convert the coupled system in two unknowns derived from the least-squares characteristic MFEM into two uncoupled systems in the unknowns. We theoretically prove that the approximations constructed by the split least-squares characteristic MFEM converge with the optimal order in L2 and H1 normed spaces for the primal unknown and with the optimal order in L2 normed space for the flux unknown. And we provide some numerical results to confirm the validity of our theoretical results.

ERROR ESTIMATES FOR FULLY DISCRETE MIXED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR PARABOLIC PROBLEMS

  • OHM, MI RAY;LEE, HYUN YOUNG;SHIN, JUN YONG
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.685-693
    • /
    • 2015
  • In this paper, we introduce fully discrete mixed discontinuous Galerkin approximations for parabolic problems. And we analyze the error estimates in $l^{\infty}(L^2)$ norm for the primary variable and the error estimates in the energy norm for the primary variable and the flux variable.

NUMERICAL DISCRETIZATION OF A POPULATION DIFFUSION EQUATION

  • Cho, Sung-Min;Kim, Dong-Ho;Kim, Mi-Young;Park, Eun-Jae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.189-200
    • /
    • 2010
  • A numerical method is proposed and analyzed to approximate a mathematical model of age-dependent population dynamics with spatial diffusion. The model takes a form of nonlinear and nonlocal system of integro-differential equations. A finite difference method along the characteristic age-time direction is considered and primal mixed finite elements are used in the spatial variable. A priori error estimates are derived for the relevant variables.

Vibration Analysis of Shaft with Impeller for Resin Chock Mixing Machine (Resin Chock 교반기용 임펠러가 달린 축의 진동해석)

  • Hong, Do-Kwan;Park, Jin-Woo;Baek, Hwang-Soon;Ahn, Chan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.970-977
    • /
    • 2008
  • This paper deals with the dynamic characteristics of the shaft with impeller model which is the most important part in developing the resin mixing machine. Through reverse engineering, it is possible to make the shaft with impeller geometry model which is necessary vibration characteristic analysis by commercial impeller. The natural frequency analysis and structural analysis using finite element analysis software are performed on the imported commercial shaft with impeller model. The most important fundamental natural frequency of the shaft with impeller model is around 14.5 Hz, which well agrees with modal testing. The most effective design variables were extracted by ANOM(analysis of means) and pareto chart. This paper presents approximation 2nd order polynomial as design variables using RSM(response surface methodology). Generally, RSM take 2 or 3 design variables, but this method uses 5 design variables with table of mixed orthogonal array. Further more, the analyzed result of the commercial shaft with impeller is to be utilized for the structural design of resin chock mixing machine.

Design of 2 Axles Fatigue Test JIG for the Materialization of Mixed Mode (Mode I+II) (혼합모드(Mode I+II)구현을 위한 2축 피로시험 JIG 설계)

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kim, Gi-Man;Kim, Jam-Kyu;Choi, Myoung-Su;Kim, Woo-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • Elements of a mechanical structure are getting from multi-axles stress. so fatigue characteristic experiment Shall execute in multi-axles stress state. it is very hard to apply according to forms of a testing machine and implementation. In this study, 2 axles fatigue testing machine did a design and Development. a new JIG developed to realize a mixed mode. a stress state in mixed mode of a specimen had each other comparison using the Finite element method to examine propriety of a new JIG.

  • PDF

Optimal Design of Permanent Magnetic Actuator for Permanent Magnet Reduction and Dynamic Characteristic Improvement using Response Surface Methodology

  • Ahn, Hyun-Mo;Chung, Tae-Kyung;Oh, Yeon-Ho;Song, Ki-Dong;Kim, Young-Il;Kho, Heung-Ryeol;Choi, Myeong-Seob;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.935-943
    • /
    • 2015
  • Permanent magnetic actuators (P.M.A.s) are widely used to drive medium-voltage-class vacuum circuit breakers (V.C.B.s). In this paper, a method for design optimization of a P.M.A. for V.C.B.s is discussed. An optimal design process employing the response surface method (R.S.M.) is proposed. In order to calculate electromagnetic and mechanical dynamic characteristics, an initial P.M.A. model is subjected to numerical analysis using finite element analysis (F.E.A.), which is validated by comparing the calculated dynamic characteristics of the initial P.M.A. model with no-load test results. Using tables of mixed orthogonal arrays and the R.S.M., the initial P.M.A. model is optimized to minimize the weight of the permanent magnet (P.M.) and to improve the dynamic characteristics. Finally, the dynamic characteristics of the optimally designed P.M.A. are compared to those of the initially designed P.M.A.

Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup (전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석)

  • Kim Sung Wook;Han Sang Muk;Kang Su Tae;Kong Jeong Shick;Kang Jun Hyung;Jun Sang Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF