Browse > Article
http://dx.doi.org/10.5370/JEET.2015.10.3.935

Optimal Design of Permanent Magnetic Actuator for Permanent Magnet Reduction and Dynamic Characteristic Improvement using Response Surface Methodology  

Ahn, Hyun-Mo (Dept. of Electrical Engineering, Dong-A University)
Chung, Tae-Kyung (School of Electrical and Electronics Engineering, Chung-Ang University)
Oh, Yeon-Ho (Power Apparatus Research Center, HVDC Research Division, Korea Electrotechnology Research Institute)
Song, Ki-Dong (Power Apparatus Research Center, HVDC Research Division, Korea Electrotechnology Research Institute)
Kim, Young-Il (ENTEC Electric & Electronic Co., Ltd.)
Kho, Heung-Ryeol (ENTEC Electric & Electronic Co., Ltd.)
Choi, Myeong-Seob (ENTEC Electric & Electronic Co., Ltd.)
Hahn, Sung-Chin (Dept. of Electrical Engineering, Dong-A University)
Publication Information
Journal of Electrical Engineering and Technology / v.10, no.3, 2015 , pp. 935-943 More about this Journal
Abstract
Permanent magnetic actuators (P.M.A.s) are widely used to drive medium-voltage-class vacuum circuit breakers (V.C.B.s). In this paper, a method for design optimization of a P.M.A. for V.C.B.s is discussed. An optimal design process employing the response surface method (R.S.M.) is proposed. In order to calculate electromagnetic and mechanical dynamic characteristics, an initial P.M.A. model is subjected to numerical analysis using finite element analysis (F.E.A.), which is validated by comparing the calculated dynamic characteristics of the initial P.M.A. model with no-load test results. Using tables of mixed orthogonal arrays and the R.S.M., the initial P.M.A. model is optimized to minimize the weight of the permanent magnet (P.M.) and to improve the dynamic characteristics. Finally, the dynamic characteristics of the optimally designed P.M.A. are compared to those of the initially designed P.M.A.
Keywords
Permanent magnetic actuators; Finite element analysis; Optimization methods; Permanent magnetic machines; Response surface method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S.Fang, H.Lin, and S.L. Ho, “Transient Co-Simulation of Low Voltage Circuit Breaker with Permanent Magnet Actuator”, IEEE Trans. Mag., vol. 45, no. 3, pp. 1242-1245, Mar., 2009.   DOI   ScienceOn
2 D. D. Shipp, T. J. Dionise, V. Lorch, and B. G. MacFarlane, “Transformer Failure Due to Circuit-Breaker-Induced Switching Transients”, IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 707-718, Mar./Apr., 2011.   DOI   ScienceOn
3 D. D. Shipp, T. J. Dionise, V. Lorch, and W. G. MacFarlane, “Vacuum Circuit Breaker Transients During Switching of an LMF Transformer”, IEEE Trans. Ind. Appl., vol. 48, no. 1, pp. 37-44, Jan./Feb., 2012.   DOI   ScienceOn
4 K. N. Park, J. W. Son, and S. C. Hahn, "Dynamic Characteristic Analysis of Permanent Magnetic Actuators Coupled Electromagnetic-mechanical Finite Element Method", in Proc. 2010 International Conference on Electrical Machines and Systems, pp. 1706-1709.
5 S. K. Hong, J. S. Ro, and H. K. Jung, “Optimal Design of a Novel Permanent Magnetic Actuator using Evolutionary Strategy Algorithm and Kriging Meta-model”, J Electr. Eng. Technol., vol. 9, no. 2, pp. 471-477, Mar., 2014.   DOI   ScienceOn
6 A. Khuri and S. Mukhopadhyay, “Response Surface Methodology: Advanced Review”, WIREs Comp. Stat., vol. 2, no. 2, pp. 128-149, Mar./Apr., 2010.   DOI
7 S. Fang, H. Lin, S. L. Ho, X. Wang, P. Jin, and H. Liu, “Characteristics Analysis and Simulation of Permanent Magnet Actuator with a New Control Method for Air Circuit Breaker”, IEEE Trans. Mag., vol. 45, no. 10, pp. 4566-4569, Oct., 2009.   DOI   ScienceOn
8 J. R. Brauer, Magnetic actuators and sensors, Wiley-Interscience, 2006.
9 D. K. Hong, B. C. Woo, D. H. Koo, and D. H. Kang, “Optimum Design of Transverse Flux Linear Motor for Weight Reduction and Improvement Thrust Force Using Response Surface Methodology”, IEEE Trans. Mag., vol. 44, no. 11, pp. 4317-4320, Nov., 2008.   DOI   ScienceOn
10 D. K. Hong, B. C. Woo, and C. W. Ahn, “Optimum Design for Improvement of PM-type Longitudinal Flux Linear Motor Using the Statistical Methods”, International Journal of Modern Physics B, vol. 24, no. 15n16, pp. 2821-2826, Jun., 2010.   DOI   ScienceOn
11 A. M. Omekanda, “Robust Torque and Torque-perinertia Optimization of a Switched Reluctance Motor using the Taguchi method”, IEEE Trans. Ind. Appl., vol. 42, no.2, pp. 473-478, Mar./Apr., 2006.   DOI   ScienceOn
12 D. K. Hong, B. C. Woo, D. H Koo, and K. C. Lee, “Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications”, Sensors, vol. 10, no. 7, pp. 6718-6729, Jul., 2010.   DOI   ScienceOn
13 P. G. Slade, The vacuum interrupter - theory, design, and application, CRC Press, 2008.
14 G. E. P. Box, J. S. Hunter, and J. S. Hunter, Statistics for Experimenters: Design Innovation, and Discovery, Wiley-Interscience, 2005.
15 S.H. Khan, M. Cai, T.V. Grattan, K. Kajan, M. Honeywood, and S. Mills, “Computation of 3-D Magnetic Field Distribution in Long-Lifetime Electromagnetic Actuators”, IEEE Trans. Mag., vol. 43, no. 4, pp. 1161-1164, Apr., 2007.   DOI   ScienceOn
16 J. Xie, D. H. Kang, B. C. Woo, J. Y. Lee, Z. H. Sha, and S. D. Zhao, “Optimum Design of Transverse Flux Machine for High Contribution of Permanent Magnet to Torque Using Response Surface Methodology”, J Electr. Eng. Technol., vol. 7, no. 5, pp. 745-752, Sep., 2012.   DOI   ScienceOn
17 J. S. Ro, S. K. Hong, and H. K. Jung, “Characteristic Analysis and Design of a Novel Permanent Magnetic Actuator for a Vacuum Circuit Breaker”, Electric Power Applications, IET, vol. 7, no. 2, pp. 87-96, Feb., 2013.   DOI   ScienceOn
18 H. M. Hasanien, A. S. Abd-Rabou, and S. M. Sakr, “Design Optimization of Transverse Flux Linear Motor for Weight Reduction and Performance Improvement Using Response Surface Methodology and Genetic Algorithms”, IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 598-605, Sep., 2010.   DOI   ScienceOn
19 A. Iturregi, E. Torres, I. Zamora, and O. Abarrategui, "High Voltage Circuit Breaker: SF6 vs. Vacuum", in Proc. the 7nd Int. Conf. Renewable Energies and Power Quality 2009, pp. 1-6.