• Title/Summary/Keyword: chaotic series

Search Result 138, Processing Time 0.02 seconds

Ultrasonic Pattern Recognition of Welding Defects Using the Chaotic Feature Extraction (카오스 특징 추출에 의한 용접 결함의 초음파 형상 인식)

  • Lee, Won;Yoon, In-Sik;Lee, Byung-Chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.167-174
    • /
    • 1998
  • The ultrasonic test is recognized for its significance as a non-destructive testing method to detect volume defects such as porosity and incomplete penetration which reduce strength in the weld zone. This paper illustrates the defect detection in the weld zone of ferritic carbon steel using ultrasonic wave and the evaluation of pattern recognition by chaotic feature extraction using time series signal of detected defects as data. Shown in the time series data were that the time delay was 4 and the embedding dimension was 6 which indicate the geometric dimension of the subject system and the extent of information correlation. Based on fractal dimension and lyapunov exponent in quantitative chaotic feature extraction, feature value of 2.15, 0.47 is presented for porosity and 2.24, 0.51 for incomplete penetration The precision rate of the pattern recognition is enhanced with these values on the total waveform of defect signal in the weld zone. Therefore, we think that the ultrasonic pattern recognition method of weld zone defects of ferritic carbon steel by ultrasonic-chaotic feature extraction proposed in this paper can boost precision rate further than the existing method applying only partial waveform.

  • PDF

Introduction to Chaos Analysis Method of Time Series Signal: With Priority Given to Oceanic Underwater Ambient Noise Signal (시계열 신호의 흔돈분석 기법 소개: 해양 수중소음 신호를 중심으로)

  • Choi, Bok-Kyoung;Kim, Bong-Chae;Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.459-465
    • /
    • 2006
  • Ambient noise as a background noise in the ocean has been well known for its the various and irregular signal characteristics. Generally, these signals we treated as noise and they are analyzed through stochastical level if they don't include definite sinusoidal signals. This study is to see how ocean ambient noise can be analyzed by the chaotic analysis technique. The chaotic analysis is carried out with underwater ambient noise obtained in areas near the Korean Peninsula. The calculated physical parameters of time series signal are as follows: histogram, self-correlation coefficient, delay time, frequency spectrum, sonogram, return map, embedding dimension, correlation dimension, Lyapunov exponent, etc. We investigate the chaotic pattern of noises from these parameters. From the embedding dimensions of underwater noises, the assesment of underwater noise by chaotic analysis shows similar results if they don't include a definite sinusoidal signal. However, the values of Lyapunov exponent (divergence exponent) are smaller than that of random noise signal. As a result we confirm the possibility of classification of underwater noise using Lyapunov analysis.

Chaotic Behavior Phenomena in Love Model with External Environment considering Colored Noise (외부 환경을 가진 사랑 모델에서 컬러 잡음을 고려한 카오스 거동 현상)

  • Shon, Young-Woo;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.343-348
    • /
    • 2020
  • During 50 years, the chaotic theory has begun to research with concerning in Mathematics and physics, and it has extended the fields to of engineering and social science. Recently, chaotic theory has progressed as a type of fusion research fused with natural science and social science. Such fused research includes problems for addiction, happiness of human, problem happened between family and love affairs between man and woman. In this paper, we consider the external environment based on love model which is one among fusion research, and when we consider colored noise in the external environment, we verify how the chaotic pattern is affected in the love model through time series and phase portrait.

Nonlinear Behavior in Love Model with Discontinuous External Force

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • This paper proposes nonlinear behavior in a love model for Romeo and Juliet with an external force of discontinuous time. We investigated the periodic motion and chaotic behavior in the love model by using time series and phase portraits with respect to some variable and fixed parameters. The computer simulation results confirmed that the proposed love model with an external force of discontinuous time shows periodic motion and chaotic behavior with respect to parameter variation.

Analysis of information encoding in a chaotic neural network (카오스 신경회로망에서의 정보의 인코딩 해석)

  • 여진경
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.367-371
    • /
    • 2002
  • I construct a chaotically driven contraction system having some analogy with the information transfer mechanism in the brain system especially from CA1 cell to CA3 cell known from the empirical result. And I consider the properties of the response system on a state space according to the external input into the drive neuron by observing the fractal hierarchical structure. Then I induce the relation between the information about state transition of the chaotic time series and the spatial information on a fractal attractor to confirm the possibility of encoding of time series data to spatial information.

  • PDF

On Chaotic Behavior of Fuzzy Inferdence Rule Based Nonlinear Functions

  • Ikoma, Norikazu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.861-864
    • /
    • 1993
  • This research provides the results of a trial to generate the chaos by using nonlinear function constructed by fuzzy inference rules. The chaos generation function or chaotic behavior can be obtained by using Takagi-Sugeno fuzzy model with some constraint of the relationship of its parameters. Two examples are shown in this research. The first is simple example that construct of logistic image by fuzzy model. The second is more complicated one that provide the chaotic time series by non-linear autoregression based on fuzzy model. Simulated results are shown in these examples.

  • PDF

A Study on Design of Neural Network for the Prediction of EEG with Chaotic Characteristics (카오스 특성을 갖는 뇌파신호의 예측을 위한 신경회로망 설계에 관한 연구)

  • Shin, Chang-Yong;Kim, Taek-Soo;Park, Sang-Hui
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.265-269
    • /
    • 1995
  • In this study, we present a training method of radial basis function networks based on recursive modified Gram-Schmidt algorithm for single step prediction of chaotic time series. With single step predictions of Mackey-Glass time series and alpha-rhythm EEG which has chaotic characteristics, the radial basis function network trained by this method is compared with one trained by a classical non-recursive method and the radial basis function model proposed by X.D. He and A. Lapedes. The results show the effectiveness of the training method.

  • PDF

Analysis of Chaotic Behavior in Fractional Duffing Equation (Fractional Duffing 방정식에서의 카오스 거동 해석)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.12
    • /
    • pp.1389-1394
    • /
    • 2015
  • Recently many effort appears applying the concept of fractional calculus that can be represented by fractional differential equation in the control engineering, physics and mathematics. This paper describes the fractional order with real order for Duffing equation which can be represented by integer order. This paper also confirms the existence of chaotic behaviors by using time series and phase portrait with varying the parameter of real order.

Chaotic behavior analysis in the mobile robot of embedding some chaotic equation with obstacle

  • Bae, Youngchul;Kim, Juwan;Kim, Yigon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.729-736
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding some chaotic such as Chua`s equation, Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent In the mobile robot with obstacle. We consider that there are two type of obstacle, one is fixed obstacle and the other is VDP obstacle which have an unstable limit cycle. In the VDP obstacles case, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

Chaotic Predictability for Time Series Forecasts of Maximum Electrical Power using the Lyapunov Exponent

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.369-374
    • /
    • 2011
  • Generally the neural network and the Fuzzy compensative algorithms are applied to forecast the time series for power demand with the characteristics of a nonlinear dynamic system, but, relatively, they have a few prediction errors. They also make long term forecasts difficult because of sensitivity to the initial conditions. In this paper, we evaluate the chaotic characteristic of electrical power demand with qualitative and quantitative analysis methods and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction and a time series forecast for multi dimension using Lyapunov Exponent (L.E.) quantitatively. We compare simulated results with previous methods and verify that the present method is more practical and effective than the previous methods. We also obtain the hourly predictability of time series for power demand using the L.E. and evaluate its accuracy.