• Title/Summary/Keyword: chaotic motion

Search Result 80, Processing Time 0.026 seconds

Lagrangian Chaos and Dispersion of Passive Particles on the Ripple Bed (해저 파문에서의 입자의 라그란지적 혼돈 및 확산)

  • 김현민;서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 1993
  • The dispersion in the oscillatory flow generated by gravitational waves above the spatially periodic repples is studied. The steady parts of equations describing the orbit of the passive particle in a two dimensional field are assumed to be simply trigonometric functions. From the view point of nonlinear dynamics, the motion of the particle is chaotic under externally time-periodic perturbations which come from the wave motion. Two cases considered here are; (i) shallow water, and (ii) deep water approximation.

  • PDF

Controlling Particle Motion and Attribute Change by Fuzzy Control (퍼지제어에 의한 파티클 움직임 및 속성변화 제어)

  • Kang, Hwa-Seok;Choi, Seung-Hak;Eo, Kil-Su;Lee, Hong-Youl
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 1996
  • A particle system is defined as a collection of primitive particles that together represent irregular and ever-changing objects such as smoke, clouds, waterfalls, and explosions. A particle system can be a powerful tool for modeling a deformable object's motion and change of form since it has dynamic properties with time. As an object becomes more complicated and shows more chaotic behavior, however, we need much more parameters for describing its characteristics completely. Consequently, the conventional particle system leads to difficulty in managing all of the parameters properly since one parameter can affect the others. Moreover, motion equations for representing particles' behavior are usually approximated to gain speed-ups. The inevitable errors in calculating the equations can cause an unexpected outcome. In this paper, we present a new approach of applying fuzzy contol to mage particles' motion and attributes changes over time. We also give an implementation result of a fuzzy particle system to show the feasibility of the proposed method. Applications of the system to explosions, nebulae, volcanos, and grass are presented.

  • PDF

THE FAST PYROLYSIS CHARACTERISTICS OF LIGNOCELLULOSIC BIOMASS IN A BUBBLING FLUIDIZED BED REACTOR (기포 유동층 반응기내 목질계 바이오매스의 급속열분해 특성)

  • Choi, Hang-Seok
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.94-101
    • /
    • 2011
  • The fast pyrolysis characteristics of lignocellulosic biomass are investigated for a bubbling fluidized bed reactor by means of computational fluid dynamics (CFD). To simulate multiphase reacting flows for gases and solids, an Eulerian-Eulerian approach is applied. Attention is paid for the primary and secondary reactions affected by gas-solid flow field. From the result, it is scrutinized that fast pyrolysis reaction is promoted by chaotic bubbling motion of the multiphase flow enhancing the mixing of solid particles. In particular, vortical flow motions around gas bubbles play an important role for solid mixing and consequent fast pyrolysis reaction. Discussion is made for the time-averaged pyrolysis reaction rates together with time-averaged flow quantities which show peculiar characteristics according to local transverse location in a bubbling fluidized bed reactor.

Nonlinear Phenomena in MEMS Device (MEMS 소자에서의 비선형 현상)

  • Kim, Ju-Wan;Koo, Young-Duk;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1073-1078
    • /
    • 2012
  • In this paper, we propose the MEMS system with Duffing equation to confirm nonlinear features in MEMS system. We also analyze nonlinear phenomena when adding the nonlinear term of another type. As a verification, we confirm chaotic motion by parameter variation through the time series, phase portrait and power spectrum.

Nonlinear Control of Chua's Diode (Chua다이오드의 비선형제어)

  • Lim, So-Young;Lee, Ho-Jin;Lee, Jung-Kook;Kim, Seung-Roual;Lee, Keum-Won;Lee, Jun-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.285-287
    • /
    • 2006
  • The paper treats the nonlinear robust control of Chua's circuit having Chuar's diode as an element based on the internal model principle. The Chua's diode has unknown nonlinear parameters and the circuits parameters are alos assumend unknown. Nonlinear regulator equations are established to obtain 3-fold equilibrium equations on which the output error is zero. Also an internal model of the 3-fold exosystem is constructed for obtaining the control law. Pole Placement method is used for obtaining the feeback control law. Simulation results are presented for tracking the sinusoidal and constant reference input signal. Asymptotic trajectory control and the suppression of chaotic motion in spite of uncertainties in the system are accomplished.

  • PDF

A Study on Extracting Characteristics of High Impedance Fault-Current Based on Chaotic Analysis. (카오스 해석에 기초한 고저항 고장전류의 특징 추출에 관한 연구)

  • 배영철;고재호;임화영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.379-388
    • /
    • 2000
  • Previous studies on high impedance faults assumed that the erratic behavior of fault current would be random. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents, which represent geometrical self-similarity are calculated. In addition, qualitative analysis such as phase planes, Poincare maps obtained from fault currents indicate that the irregular behavior is described by strange attractor.

  • PDF

An Experimental Study on Chaotic Vibrations of a Thin Beam under Torsional Excitation (지지부에 비틀림 하중을 받는 얇은 빔의 혼돈역학에 관한 실험적 연구)

  • 권태호;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.191-196
    • /
    • 1995
  • 지지부에 비틀림 하중을 받는 Elstica는 비틀림 운동을 하며, 그 가진 주파수가 굽힘모드 근처일 때는 해당하는 굽힘 모드의 운동까지도 동시에 존재하게 된다. 이때 가진력의 크기가 작을때는 주기적인 운동이 된다. 가진력의 크기가 증가함에 따라 굽힘 운동은 굽힘 1차 모드와 연성된 유사주기운동이 발생하며, 이떤 범위 이상이 되면 굽힘 운동과 비틀림 운동이 결합된 진폭이 매우 크고 불규칙적인 비평면 운동(out of plane motion)이 발생하게 되며 이 때의 운동은 혼돈운동이다. Elastica가 굽힘 3차 고유진동수 근방의 주파수로 비틀림 하중을 받을 때의 정확한 이론적 해석을 위해서는 굽힘 3차모드 까지는 반영할 수 있는 식이 모델링 되어야 할 것으로 보인다. 이것은 복잡한 비평면운동을 할 때 굽힘 3차 모드까지 관찰된다는 사실에 근거한다.

  • PDF

Non-linear Vibration of Gear Pair System with transmission error and Backlash (전달오차와 백래쉬를 고려한 기어구동계의 비선형 진동)

  • 조윤수;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.73-78
    • /
    • 2001
  • Main sources of the vibration of a gear-pair system are backlash and transmission error. This paper investigates the dynamics of a gear-pair system involving backlash and transmission error. This paper presented 4 types of gear motions due to the existence of a backlash. The solutions are calculated using a multiple-time scale method and numerically. The results shows the existence of 4 type motions, jump phenomenon, and chaotic motion consequently the design of gear driving system with low vibration and noise requires the study on the effects of transmission error and backlash, i.e. nonlinearities in gear driving system.

  • PDF

A Study on Extracting Chaotic Properties from High Impedance Faults in Power Systems (전력계통의 고임피던스 고장으로부터 혼돈특성 추출에 관한 연구)

  • 고재호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.545-549
    • /
    • 1999
  • Previous studies on high impedance faults assumed that the erratic behavior of fault current would be random. In this paper we prove that the nature of the high impedance faults is indeed a deterministic chaos not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents in order to evaluate the orbital instability peculiar to deterministic chaos dynamically and fractal dimensions of fault currents which represent geometrical self-similarity are calculated. In addition qualitative analysis such a s phase planes Poincare maps obtained from fault currents indicate that the irregular behavior is described by strange attractor.

  • PDF

ON BIFURCATION MODES AND FORCED RESPONSES IN COUPLED NONLINEAR OSCILLATORS

  • Pak, Chol-Hui;Shin, Hyeon-Jae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.29-67
    • /
    • 1995
  • A procedure is formulated, in this paper, to compute the bifurcation modes born by the stability change of normal modes, and to compute the forced responses associated with bifurcation modes in inertially and elastically coupled nonlinear oscillators. It is assumed that a saddle-loop is formed in Poincare map at the stability chage of normal modes. In order to test the validity of procedure, it is applied to one-to-one internal resonant systems in which the solutions are guaranteed within the order of a small perturbation parameter. The procedure is also applied to the exact system in which normal modes are written in exact form and the stability of normal modes can be exactly determined. In this system the stability change of normal modes occurs several times so that various types of bifurcation modes are created. A method is described to identify a fixed point on Poincare map as one of bifurcation modes. The limitations and advantage of proposed procedure are discussed.