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ABSTRACT

Previous studies on high impedance faults assumed that the erratic behavior of fault current would be
random. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos,
not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are
applied to various fault currents in order to evaluate the orbital instability peculiar to deterministic chaos
dynamically, and fractal dimensions of fault currents, which represent geometrical self-similarity are
calculated. In addition, qualitative analysis such as phase planes, Poincare maps obtained from fault currents
indicate that the irregular behavior is described by strange attractor.

1. Introduction

High impedance faults(HIF) can be described as
those faults which do not draw sufficient fault current to
be recognized and cleared by the overcurrent devices in
common use in the utility industry. Since these faults
behavior are affected by the surface conditions, duration
of arcing, so reveal unsteady- non-periodic oscillation,
asymmetrical shape of waveforms.

Numerous detection methods[7-12] have been
suggested for such fault detection, but there is no perfect
solution to solve it. In recent years, a fractal geometry
[15] has been applied to current of HIF, however, many
problems remain in applying only a dimensional
analysis, such as the decision of the delay time and the
scaling region necessary for the reliable correlation
integral.

In this paper, these irregular dynamics are analyzed
by chaotic analysis in order to prove the existence of a
certain degree of low dimensional chaos in HIF. Not
only phase plane and Poincare map are implemented
but also quantification of chaos is presented by
estimation of Lyapunov spectrum, the largest Lyapunov
exponent, correlation dimension.

As a result, the largest Lyapunov exponents of the
fault currents are estimated to be positive that by
definition are the most striking evidence for chaos. In
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addition non-integer correlation dimensions, strangeness
in phase plane and Poincare map indicate that chaotic
properties really existed in HIF.

The organization of this paper is as follows. In section
2, HIF currents and state reconstruction by delay
embedding method are presented in the framework of
chaotic analysis. The qualitative and quantitative
analysis are applied to HIF currents in section 3 and 4.
Conclusions of the paper are summarized in section 5.

2. HIF current & State reconstruction

The fault currents are measured from three-phase
four-wire multi-grounded distribution line at Gochang,
Korea, in 1997. Faults data are quantized and sampled
with a sampling time 100 [y sec] and summarized as
below.

+ Data sampling time :
* Number of samples :
* Data bit : 12 bit
+ Data channel :
7 channel (V, V), V., I, I, I, 1)
+ Faults on sidewalk, sandy soil, gravelly place,
automobile

100 [u sec]
10,000

Various faults, which have different contacted objects,
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Fig. 1. Current and voltage waveforms of HIF
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Fig. 2. Current and voltage waveforms of HIF
(t[0.4, 0.5])

are shown by Fig. | and Fig. 2.

In these Fig, dashed lines are voltage waveforms, and
solid lines are faults current waveforms.

From Fig. 1, we choose only <[ 0.45, 0.5], and
present Fig. 2.

The faults behavior, Fig. 2, are affected by the surface
conditions, and are characterized by unsymmetrical half
cycles, unsteady change of magnitudes, irregular
oscillations.

Because the data of HIF are single variable time-series
(that is voltages and currents of each phase), we applied
an embedding method proposed by Takens{5], in order
to reconstruct phase plane. The embedding refer to the
process by which a representation of the attractor can be
reconstructed from a set of scalar time series. The form
of such reconstructed states is given as follows.

X=x(@0), x(t+ 1), -, x(@tHm - 1)7)] (M

where x(¢) is an fault current, 7is a delay time, and m
is an embedding dimension. It is a key factor to choose
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Fig. 3. Phase plane of HIF current waveforms

the delay time and embedding dimension, so we choose
T is 42 using an auto-correlation time and sample
interval between Poincare section. Embedding
dimension is chosen 3 because nearest false neighbour
disappears in that dimension.

3. Qualitative Analysis

With reconstructed states, the qualitative chaotic
degree of HIF currents is analyzed in this section using
embedding phase planes and Poincare maps.

We reconstruct the orbit of the attractor from HIF
current with the embedding dimension m = 3, the delay
time T=42. and the number of states N=10,000

Fig. 3 shows phase plane of these embedding states
which are originally fault currents when distributed line
is grounded on (a)sidewalk, (b)sandy soil, (c)gravelly
place, and (d)automobile.

As a result, orbits, which never exactly repeat like
periodic motions, and tend to fill up a certain section of
the phase space, have fine structures like chaotic strange
attractors.

Poincare map is an sampling process which chooses
an m-1 dimensional hyper-plane and records only the
states which intersect this plane. The results of Poincare
maps are shown in Figures 4 and 5 with choosing
different hyper plane.(Fig. 4 : perpendicular to x-axis,
Fig. 5 : mean plane)

Results show Poincare maps do not consist of either
a finite set of points(periodic motion) nor a closed
orbit(quasi periodic or torus) but have some
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Fig. 4. Poincare map of HIF current waveforms
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Fig. 5. Poincare map of HIF current waveforms
(mean-plane)

characteristic organization, so behavior is chaotic.

4. Quantitative Analysis

Quantifying chaos with Lyapunov exponents(a
measure of the divergence of nearby trajectories, which
is a positive number for chaotic systems), and
correlation dimension(non-integer for chaotic systems)
is presented in this section, because it is unreliable to
prove chaotic properties only with qualitative analysis.

These quantifiers may help distinguish chaotic
behavior from noisy behavior and determine how many
variables are needed to model the dynamics of the HIF.

Firstly, we evaluate Lyapunov spectrum with method
proposed by Eckmann and Ruelle[3], and represent the

Lyapunov spectrum of fault on sidewalk

¢} &0 100 160 200 250

Fig. 6. Lyapunov spectrum of fault on sidewalk

Table 1. The relationship between the reconstructed
dimensions and the largest Lyapunov exponent
(Fault on sidewalk)

reconstructed dimension largest Lyapunov exponent
2 -0.03152
-0.00841
0.023442
0.035108
0.066879
0.075614
0.172473
0.191109
0.310261

E=RRe RN Bie R R

(=]

result in Fig. 6 and Table 1.

The reliability on estimated values of Lyapunov
spectrum is confirmed in Fig. 6, which shows
convergence characteristics except the smallest
Lyapunov exponent.

However, with a careful interpretation on the results
of the relation between the embedding dimensions and
the largest Lyapunov exponent presented in Tabel 1, we
can extract the following relation.

A < m (2)

Such a dependence of 4,,,, on m could be one of the
warnings that applied algorithm does not work well. So,
we abandon these results and apply a robust method that
embeddings are only used to distinguish between false
and true neighbours, proposed by Kantz[2] to estimate
the largest Lyapunov exponent.

This algorithm evaluates the following eq.
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Fig. 7. Direct estimation of largest Lyapunov exponents
for fault currents
{Faults on (a)sidewalk, (b)sandy soil, (c)gravelly
place, (d)automobile]

Table 2. Largest Lyapunov exponents of HIF currents

Fault on Anax
sidewalk 0.0086
sandy soil 0.0143
gravelly place 0.0231
automobile 0.0199

where N is the number of reconstructed state, X, is a
reference point, X; is an e-near neighbor of X(i1), and 7
is the relative time.

The largest exponent is estimated the slope of the
curve 7 vs. 5(17), and Fig. 7 shows this relation and the
estimated values(largest Lyapunov exponent in HIF
currents) is represented as Table 2.

The correlation dimension is derived from correlation
sum which defined as follow.

S H(r—|X—X])) @

ij=1

C?(r) = lim —
(r) = lim pv2
Here, N is the number of state, r is the radius and H()

is a heavy-side function of parameter 7 is normally
defined as

1(120))

H(®) = (0(r<0)

(5)
Using Eq (4), correlation dimension is evaluated as the
slope of Fig. 8. Table 3 shows correlation dimensions of
fault currents under various surface condition.
Chaotic behavior of HIF currents are summarized as
follows.

- Largest Lyapunov exponent : all HIF currents have
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Correlation sum

f0g2C(7)

-1 3 1 2 3 4 5
log2(r)

Fig. 8. Correlation summation calculated from HIF current
(Fault on sandy soil)

Table 3. Correlation dimensions of HIF currents

Fault on Correlation dimension
(a) sidewalk 0.9874
(b) sandy soil 0.9936
(c) gravelly place 1.0146
(d) automobile 0.9987

positive Lyapunov exponent which by definition are the
most striking evidence for chaos.

Correlation dimension :
which show self-smilarity.

all non-integer values

5. Conclusion

We estimate Lyapunov exponent, and correlation
dimension of various fault currents in order to prove the
existence of a certain degree of deterministic chaos in
HIF. As a result, the largest Lyapunov exponents of the
fault currents are estimated to be positive that by
definition are the most striking evidence for chaos and
non-integer correlation dimensions represent that fault
currents of HIF have self-similarities.

In addition, we confirm that characteristics of chaos
in HIF using time-series, phase plane and Poincare map.

These results show that irregular dynamics of HIF
really have a certain degree of low dimensionai chaotic
properties.

An algorithm which uses these properties is expected
for detecting HIF in power system effectively.
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