• Title/Summary/Keyword: chaos analysis

Search Result 249, Processing Time 0.025 seconds

Nonlinear Analysis of Cutting Force Signal according to Cutting Condition in End Mill Machining (엔드밀 가공시 절삭조건에 따른 절삭력의 비선형 해석)

  • 구세진;강명창;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.161-164
    • /
    • 1995
  • Nonlinear analysis of various phenomena has been developed with improvement of computer. The characteristics form nonlinear analysis are available in monitoring and diagnosis state of system. There are many nonlinear property in cutting process, but nonlinear signals have been considered as noise. In this study, nonlinear analysis technique is applied and it will be verified that cutting force is chaos by calculating Lyapunov exponents,fractal dimension and embedding dimension. The relation between characteristic parameter calculated form sensor signal and various cutting condition is investigated.

  • PDF

The Analysis of Chaotic Behavior in the Chaotic Robot with Hyperchaos Path of Van der Pol(VDP) Obstacle

  • Youngchul Bae;Kim, Juwan;Park, Namsup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.589-593
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding Chua's equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. In the obstacle, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

  • PDF

Chaotic behavior analysis in the mobile robot of embedding some chaotic equation with obstacle

  • Bae, Youngchul;Kim, Juwan;Kim, Yigon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.729-736
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding some chaotic such as Chua`s equation, Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent In the mobile robot with obstacle. We consider that there are two type of obstacle, one is fixed obstacle and the other is VDP obstacle which have an unstable limit cycle. In the VDP obstacles case, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

Chaotic Behaviour Analysis for Chaotic Mobile Robot (카오스 이동 로봇에서의 카오스 거동 해석)

  • Bae Young-chul;Kim Chun-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1410-1417
    • /
    • 2004
  • In this paper, we propose that the chaotic behavior analysis in the chaotic mobile robot embedding Arnold, equation, Chua's equation and hyper-chaos equation. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle.

Dynamical Rolling Analysis of a Vessel in Regular Beam Seas

  • Lee, Sang-Do;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.325-331
    • /
    • 2018
  • This paper deals with the dynamical analysis of a vessel that leads to capsize in regular beam seas. The complete investigation of nonlinear behaviors includes sub-harmonic motion, bifurcation, and chaos under variations of control parameters. The vessel rolling motions can exhibit various undesirable nonlinear phenomena. We have employed a linear-plus-cubic type damping term (LPCD) in a nonlinear rolling equation. Using the fourth order Runge-Kutta algorithm with the phase portraits, various dynamical behaviors (limit cycles, bifurcations, and chaos) are presented in beam seas. On increasing the value of control parameter ${\Omega}$, chaotic behavior interspersed with intermittent periodic windows are clearly observed in the numerical simulations. The chaotic region is widely spread according to system parameter ${\Omega}$ in the range of 0.1 to 0.9. When the value of the control parameter is increased beyond the chaotic region, periodic solutions are dominant in the range of frequency ratio ${\Omega}=1.01{\sim}1.6$. In addition, one more important feature is that different types of stable harmonic motions such as periodicity of 2T, 3T, 4T and 5T exist in the range of ${\Omega}=0.34{\sim}0.83$.

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

Construction of Chaoral Post-Process System for Integrity Evaluation of Weld Zone (용접부 건전성 평가를 위한 카오럴 후처리 시스템의 구축)

  • Lee, Won;Yoon, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.152-165
    • /
    • 1998
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the chaoral post-process system for precision rate enhancement of ultrasonic pattern recognition. Chaos features extracted from time series data for analysis quantitatively weld defects For this purpose, feature extraction objectives in this study are fractal dimension, Lyapunov exponent, shape of strange attrator. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaoticity resulting from distance shifts such as nearby 0.5, 1.0 skip distance. Such difference in chaoticity enables the evaluation of unique features of defects in the weld zone. In quantitative chaos fenture extraction, feature values of 0.835 and 0.823 in the case of slag inclusion and 0.609 and 0.573 in the case of crack were suggested on the basis of fractal dimension and Lyapunov exponent. Proposed chaoral post-process system in this study can enhances precision rate of ultrasonic pattern recognition results from defect signals of weld zone, such as slag inclusion and crack.

  • PDF

Analysis of Intrinsic Patterns of Time Series Based on Chaos Theory: Focusing on Roulette and KOSPI200 Index Future (카오스 이론 기반 시계열의 내재적 패턴분석: 룰렛과 KOSPI200 지수선물 데이터 대상)

  • Lee, HeeChul;Kim, HongGon;Kim, Hee-Woong
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.119-133
    • /
    • 2021
  • As a large amount of data is produced in each industry, a number of time series pattern prediction studies are being conducted to make quick business decisions. However, there is a limit to predicting specific patterns in nonlinear time series data due to the uncertainty inherent in the data, and there are difficulties in making strategic decisions in corporate management. In addition, in recent decades, various studies have been conducted on data such as demand/supply and financial markets that are suitable for industrial purposes to predict time series data of irregular random walk models, but predict specific rules and achieve sustainable corporate objectives There are difficulties. In this study, the prediction results were compared and analyzed using the Chaos analysis method for roulette data and financial market data, and meaningful results were derived. And, this study confirmed that chaos analysis is useful for finding a new method in analyzing time series data. By comparing and analyzing the characteristics of roulette games with the time series of Korean stock index future, it was derived that predictive power can be improved if the trend is confirmed, and it is meaningful in determining whether nonlinear time series data with high uncertainty have a specific pattern.

Estimation on the Depth of Anesthesia using Linear and Nonlinear Analysis of HRV (HRV 신호의 선형 및 비선형 분석을 이용한 마취심도 평가)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Hye-Jin;Kim, Tae-Kyun;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.76-85
    • /
    • 2010
  • In general, anesthetic depth is evaluated by experience of anesthesiologist based on the changes of blood pressure and pulse rate. So it is difficult to guarantee the accuracy in evaluation of anesthetic depth. The efforts to develop the objective index for evaluation of anesthetic depth were continued but there was few progression in this area. Heart rate variability provides much information of autonomic activity of cardiovascular system and almost all anesthetics depress the autonomic activity. Novel monitoring system which can simply and exactly analyze the autonomic activity of cardiovascular system will provide important information for evaluation of anesthetic depth. We investigated the anesthetic depth as following 7 stages. These are pre-anesthesia, induction, skin incision, before extubation, after extubation, Post-anesthesia. In this study, temporal, frequency and chaos analysis method were used to analyze the HRV time series from electrocardiogram signal. There were NN10-NN50, mean, SDNN and RMS parameter in the temporal method. In the frequency method, there are LF and HF and LF/HF ratio, 1/f noise, alphal and alpha2 of DFA analysis parameter. In the chaos analysis, there are CD, entropy and LPE. Chaos analysis method was valuable to estimate the anesthetic depth compared with temporal and frequency method. Because human body was involved the choastic character.

The Melnikov Analysis of the Pitch Dynamics of a Gravity Gradient Satellite (중력구배 인공위성의 Pitch운동의 Melnikov해석)

  • Lee, Mok-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1427-1432
    • /
    • 2009
  • The pitch motion of a generic gravity gradient satellite is investigated in terms of chaos. The Melnikov method is used for detecting the onset of chaotic behavior of the pitch motion of a gravity gradient satellite. The Melnikov method determines the distance between stable and unstable manifolds of a perturbed system. When stable and unstable manifolds transverse on the Poincare section, the resulting motion can be chaotic. The Melnikov analysis indicates that the pitch dynamics of a generic gravity gradient satellite can be chaotic when the orbit eccentricity is small.