• Title/Summary/Keyword: channel doping

Search Result 244, Processing Time 0.028 seconds

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF

Phenomenal study on the dopant activation behavior in polysilicon thin films doped by non-mass separated ion mass doping technique (비질량 분리 이온 질량 주입법으로 도핑시킨 다결정 박막의 도판트 활성화 거동)

  • Yoon, Jin-Young;Choi, Duck-Kyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.143-150
    • /
    • 1997
  • The electrical properties of polysilicon thin films implanted with $B_2H_6$ diluted in $H_2$ as dopant source using ion mass doping technique and the effect of radiation damage on the dopant activation behavior were investigated. Comparing the SIMS profiles of boron in polysilicon films with that obtained from computer simulation using TRIM92 the most probable ion species were $B_2H_x\;^+$(x=1, 2, 3‥‥) type molecular ions. As a result of the Implantation of energetic massive ions, a continuous amorphized layer was created in polysilicon films where the fraction of amorphized layer varied with doping time. This amorphization comes from the fact that mass separation of implanting species is not employed in this ion mass doping technique. In the dopant activation behavior, reverse annealing phenomenon appeared in the intermediate annealing temperature range for a severely damaged specimen. The experimental result showed that the off-state current of the p-channel polysilicon thin film transistor is dependent on the degree of radiation damage.

  • PDF

Switching Characteristics due to the Impurity Concentration and the Channel Length in Lateral MOS-controlled Thyristor (수평 구조의 MOS-controlled Thyristor에서 채널에서의 길이 및 불순물 농도에 의한 스위칭 특성)

  • Kim, Nam-Soo;Cui, Zhi-Yuan;Lee, Kie-Yong;Ju, Byeong-Kwon;Jeong, Tae-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • The switching characteristics of MOS-Controlled Thyristor(MCT) is studied with variation of the channel length and impurity concentration in ON and OFF FET channel. The proposed MCT power device has the lateral structure and P-epitaxial layer in substrate. Two dimensional MEDICI simulator and PSPICE simulator are used to study the latch-up current and forward voltage-drop from the characteristics of I-V and the switching characteristics with variation of channel length and impurity concentration in P and N channel. The channel length and N impurity concentration of the proposed MCT power device show the strong affect on the transient characteristics of current and power. The N channel length affects only on the OFF characteristics of power and anode current, while the N doping concentration in P channel affects on the ON and OFF characteristics.

Analysis on I-V of DGMOSFET for Device Parameters (소자파라미터에 대한 DGMOSFET의 전류-전압 분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Jeong, Dong-Soo;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.709-712
    • /
    • 2012
  • In this paper, current-voltage have been considered for DGMOSFET, using the analytical model. The Possion equation is used to analytical. Threshold voltage is defined as top gate voltage when drain current is $10^{-7}A$. Investigated current-voltage characteristics of channel length changed length of channel from 20nm to 100nm. Also, The changes of current-voltage have been investigated for various channel thickness and doping concentration using this model, given that these parameters are very important in design of DGMOSFET. The deviation of conduction path and the influence of conduction path on current-voltage have been considered according to the dimensional parameters of DGMOSFET.

  • PDF

The Cytotoxic Mechanisms of Bacillus thuringiensis $\delta$-endotoxin, a Bioinsecticide : Effect on $K^+$ Channel of Insect Cell Lines.

  • Seo, Young-Rok;Han, Sung-Sik;Yu, Yong-Man;Lee, Jun-Jae;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.70-70
    • /
    • 1996
  • The cytotoxicological effect of Bt 1-endotoxin, well-known as a bioinsecticide, was investigated on ion channel of insect cell lines. This study attempted to evaluted the specificity by simple experiment to measure the cell swelling using lepidopteran cell lines in isotonic solution containing only one cation. Cell swelling was stimulated in KCI-sucrose isotonic solution as well as TC-100 media containg in solubilized crystal 5-endotoxin. It suggested that the cell swelling by Bt toxin have a relation to K+ channel. The cell swelling may be due to the stimulation K+ influx and simultaneously the penetration of H2O induced by Bt toxin, because the stimulation of swelling was observed with the solubilized toxin in KCI-sucrose isotonic solution, but not in sucrose isotonic solution. Moreover the specific K+ channel blocker, such as 4-arnjnopyrimidine(4-AP) and ouabain, showed the significant effect on the cell swelling induced by Bt toxin. The increasement of the cell swelling induced by 4-AP suggested to be caused by the block of K+ efflux through K+ leak channels. The inhibition of cell swelling by ouabain, which is the well-known inhibitor of Na+, K+-ATPase, suggested to be due to decreasement of K+ influx following diminishment of Na+, K+-ATPase activities.

  • PDF

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

Structure-Dependent Subthreshold Swings for Double-gate MOSFETs

  • Han, Ji-Hyeong;Jung, Hak-Kee;Park, Choon-Shik
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.583-586
    • /
    • 2011
  • In this paper, subthreshold swing characteristics have been presented for double-gate MOSFETs, using the analytical model based on series form of potential distribution. Subthreshold swing is very important factor for digital devices because of determination of ON and OFF. In general, subthreshold swings have to be under 100mV/dec. The channel length $L_g$ is varied from 30nm to 100nm, and channel thickness $t_{si}$ from 15 to 20nm according to channel length, and oxide thickness 5nm to investigate subthreshold swing. The doping of channel is fixed with $10^{16}cm^{-3}$ p-type. The results show good agreement with numerical simulations, confirming this model.

Effect of Channel Length in LDMOSFET on the Switching Characteristic of CMOS Inverter

  • Cui, Zhi-Yuan;Kim, Nam-Soo;Lee, Hyung-Gyoo;Kim, Kyoung-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • A two-dimensional TCAD MEDICI simulator was used to examine the voltage transfer characteristics, on-off switching properties and latch-up of a CMOS inverter as a function of the n-channel length and doping levels. The channel in a LDMOSFET encloses a junction-type source and is believed to be an important parameter for determining the circuit operation of a CMOS inverter. The digital logic levels of the output and input voltages were analyzed from the transfer curves and circuit operation. The high and low logic levels of the input voltage showed a strong dependency on the channel length, while the lateral substrate resistance from a latch-up path in the CMOS inverter was comparable to that of a typical CMOS inverter with a guard ring.

A Study on the Relation of Doping Profile and Threshold voltage in the Ion-Implanted E-IGFET(I) (Ion-Implanted E-IGFET의 Doping Profile과 Threshold 전압과의 관계에 관한 연구(I))

  • Son, Sang-Hui;O, Eung-Gi;Gwak, Gye-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.58-64
    • /
    • 1984
  • A simple model for the impurity profile in an ion-implanted channel layer of an enhancement type IGFET is assumed and a simple expression for the threshold voltage derived by using the assumed impurity profile is analyzed in detail. Also, this simple model is applied to simulating the substrate bias dependence of its threshold voltage. Excellent agreement is obtained between theory and experiment on n-channel devices. The error range of threshold voltage between gaussian-profile and box-profile is calculated in this paper and a new method of calculating the depth of ion-implanted Baler D is also introduced.

  • PDF

Threshold Voltage Modeling of Double-Gate MOSFETs by Considering Barrier Lowering

  • Choi, Byung-Kil;Park, Ki-Heung;Han, Kyoung-Rok;Kim, Young-Min;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.76-81
    • /
    • 2007
  • Threshold voltage ($V_{th}$) modeling of doublegate (DG) MOSFETs was performed, for the first time, by considering barrier lowering in the short channel devices. As the gate length of DG MOSFETs scales down, the overlapped charge-sharing length ($x_h$) in the channel which is related to the barrier lowering becomes very important. A fitting parameter ${\delta}_w$ was introduced semi-empirically with the fin body width and body doping concentration for higher accuracy. The $V_{th}$ model predicted well the $V_{th}$ behavior with fin body thickness, body doping concentration, and gate length. Our compact model makes an accurate $V_{th}$ prediction of DG devices with the gate length up to 20-nm.