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Threshold Voltage Modeling of Double-Gate MOSFETs
by Considering Barrier Lowering

Byung-Kil Choi, Ki-Heung Park, Kyoung-Rok Han, Young Min Kim, and Jong-Ho Lee

Abstract—Threshold voltage (V) modeling of double-
gate (DG) MOSFETs was performed, for the first time,
by considering barrier lowering in the short channel
devices. As the gate length of DG MOSFETS scales down,
the overlapped charge-sharing length (x;) in the channel
which is related to the barrier lowering becomes very
important. A fitting parameter J,, was introduced semi-
empirically with the fin body width and body doping
concentration for higher accuracy. The Vj model
predicted well the 1}, behavior with fin body thickness,
body doping concentration, and gate length. Our
compact model makes an accurate Vy, prediction of DG
devices with the gate length up to 20-nm,
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I. INTRODUCTION

According to the projection of the 2007 International
Technology Roadmap for Semiconductors (ITRS), the
physical gate length of MOSFET for a microprocessor
unit (MPU) can be scaled down to 18 nm in 2010 [1].
The scaling-down of devices is strongly required to
achieve high integration density and performance.

Recently, bulk FinFETs have been considering very
promising candidate for next generation memory cell
transistors to be applicable to dynamic random access
memory (DRAM) and flash memory [2]. As the gate
length of bulk FinFETs [3]-[5] scales down, barrier
lowering occurs in spite of low drain bias (Vps =0.05 V)
because the depleted charge-sharing length (x) [6] by
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sorce and drain in short channel is overlaped. To apply
the devices to integrated circuits, it is strongly required
to model threshold voltage (Vy,) considering the barrier
lowering in short channel. However, the Vi model has
not been developed since the x;, modeling in short
channel devices is very complicated with device
geometry and doping concentration. For ¥y modeling of
the devices, double-gate (DG) nature is key point and
needs to be understood well.

In this paper, we propose Vy model of DG MOSFETs
[7], [8] based on the correction of x;, considering barrier
lowering, and verify the Vi model by comparing with
device simulation [9] in terms of gate length (L,), fin
width (Wg,) and body doping (). Threshold voltages
were extracted by using gmmax for a given Vpg of 0.05 V
in this paper.

I1. DEVICE STRUCTURE
Fig. 1 shows 3-D schematic view of the bulk FinFET.

The H, and Wy, represent gate height and fin width,
respectively. The xjspg stands for junction depth of

Fig. 1. 3-D schematic view of bulk FinFET. The H, and Wy,
represent fin height and width, respectively.
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Fig. 2. 2-D cross-sectional view of the bulk FinFET along A-A’
in Fig. 1. The T,, and x; represent gate oxide thickness and
charge-sharing length, respectively.

source/drain extensions (SDE). The SDE concentration
is 7x10"” c¢m™ and has the profile of about dec/5 nm.
Gate oxide thickness (7,,) is fixed at 1.5 nm. Tyox
represents field oxide thickness for device isolation.

Fig. 2 shows 2-D schematic view of the DG MOSFET.
Channel doping is uniform and a variable. n” poly gate
was applied.

I11. Vg MODEL AND VERIFICATION

Fig. 3 shows d,, versus Wy, as a parameter of the body
doping. Here, the J,, [10] is a fitting parameter
representing a difference between Vi, simutation and Vin models
and introduced to take into account the ¥, change with
the Wg,. A fitting parameter J,, (empirical) is given by a
kind of empirical equation based on various data. In Fig.
3, the empirical model (open symbols) shows a good
agreement with the fitted data (solid symbols), and is
given by
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In Fig. 2, as the L, of the device scales down, the x,s
from the source and the drain are overlapped each other.
The overlap of x, means barrier lowering, and affects ¥y,

behavior. Therefore, the ¥, model of DG MOSFETs

must be modified by taking into account barrier lowering
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Fig. 3. 4, versus fin width as a parameter of the body doping.
The J,, is obtained by subtracting the modeled Vy, from the
simulated V.

in x, of short channel DG devices. To see an internal
physics for the 20 nm device, we prepared Fig. 4 which
shows the conduction band energy diagrams cut along
the channel width direction at a point showing peak
conduction band energy over the channel length at given
Vps=0.05 V and Vgs=Vy condition. It is normal that the
conduction band minimum is found at the channel
surface in a device without barrier lowering. However,
the 20 nm DG devices show the minimum point of the
conduction band at the center of the body due to the
barrier lowering. In Fig 5, we observe the conduction
band energy starts to decrease when L, decreases from
50 nm to 40 nm for given N, of 2x10" ecm™ and W, of
15 nm. This change corresponds exactly to the x;, overlap
represented by dotted line in Fig. 9. The devices in both
Figs. 5 and 9 have the same device geometry and body
doping. Since the x, (=x,~Ax;) which is charge-sharing
length considering barrier lowering is function of N,
Win, and Ly, it is very difficult (or complicated) to derive

an equation of x, based on physics. We performed

device simulation extensively by changing 3 parameters

mentioned above. Then we obtained a sort of empirical

equation at a fixed N, to explain x, for given Wy, and L,
by fitting the equation to the ( x, )s extracted from
simulated data. As an example, an empirical x, for an N,

of 2x10" em™ and L, of 20 nm to 40 nm is given by

X, =(8.31586+0.52656 L, ~0.01177- L)~ (0.0401 +0.00258 - I,
~0.00021-12)-W,, ~(69.14274 - 4.86237 - L, +0.0389 - L.)

x(1.23917 ~0.02648 - L, +0.0004 -2 )" . (2)
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Fig. 4. Conduction band energy versus fin width as a parameter
of Wiy This figure shows conduction band energy diagrams
cut along the channel width direction at a point showing peak
conduction band energy over the channel length at V=0.05 V
and Vgs=Vy, condition.

0.20 v T L) L} L] L) v T L] L}
—_ b N,=2x10"° cm® —=—L =20 nm
\>/ 0.15F W, =15nm —e—L =30nm -
5 t T,=1.5nm & Lg=40 nm
(0] - —v—L =50 s
2 0.10 v nm
Ll
2 005 ]
[
m
c L 4
5 0.00
g=
(&}
3 -0.05} -
5
O - 1 1 1 PR B | 2 .\..1

10 -
-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Channel Length (um)

Fig. 5. Conduction band energy versus channel length as a
parameter of L,. This figure shows conduction band energy
diagrams cut along the channel length direction in the center of
fin body at Vpg=0.05 V and Vg=V4, condition.

The empirical ( x,)s for an N, of 5x10'® cm™ was also
obtained by the same manner. Empirical equation (2)

and x, extracted from the simulated data are compared
in Fig. 7 which shows x, versus Wy, as a parameter of L,

for the devices with Nys of 2x10'® cm™ and 5x10'® cm™.
The Vi model of ideal DG bulk FinFETs was already
derived by B-K. Choi et al. [6]. We took ¥V model
reflecting only DG nature, and changed charge-sharing
term by considering barrier lowering as given by
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Fig. 6. Procedure of ¥V modeling and extraction of chare-
sharing length ( x, ) depending on L, for a DG MOSFET. Here,

X, I8 a parameter regarding box type channel doping and is
calculated for a channel doping profile.
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Fig. 7. x, versus Wy, as a parameter of L, for the devices with

Nes of 2x10"™ em™ and 5x10'® cm™. The empirical equations
(open symbols) show a good agreement with ( x, )s from

simulation (solid symbols).

where xgp is a depletion width, and 0.5 Wy, if the fin
body is depleted fully. The Vg, 2wp and C,, are
workfunction difference, surface potential at Vy, and
gate oxide capacitance, respectively. We ignore oxide
charge in this paper to simplify the modeling and
simulations.

Fig. 6 shows the procedure of Vy modeling and
extraction of suitable charge-sharing length ( x, )
depending on L, at a given N, and Wg for DG
MOSFETs. Here, L(=L—2x,) [6] is the channel length
based on the box channel doping profile. L, is shown in
Fig. 2.
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Fig. 8. Vy, versus L,. Here, Wy, of 5 nm and N, of 2x10'® cm™

are applied. The overlap of x;, occurs at L, of 90 nm. The

model(Corrected) shows a good agreement with 2-D device
simulation.
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Fig. 9. Vi, versus L,. Here, Wy, of 15 nm and M, of 2x10"® cm™
are applied. The overlap of x, occurs at Ly of 45 nm. The
model(Corrected) shows a good agreement with 2-D device
simulation.

0.30 LI B e e e B LI

0.25 /a/” ]

0.20 4

—m— Simulation

015 —2— Model(Corrected) ]
< 010 < Model(Uncorrected) i
> 005 %,=9.5 nm Nb=5x10‘8 cm®

0.00 W, =20 nm n’ poly gate E

0.05 T,=1.50nm V_ =005V

-0.10 PRV 1 1 1 N L 1 1 1

0 20 40 60 80 100 120 140 160 180 200 220

Lg (nm)

Fig. 10. Vyy versus L,. Here, Wg, of 20 nm and N, of 5x10'
cm™ are applied. The overlap of x, occurs at L, of 29 nm. The
model(Corrected) shows a good agreement with 2-D device
simulation.

Figs. 8 — 12 show ¥y, versus L, at given Wy, and N,,. In
these figures, charge-sharing length is overlapped in the
left side of the dotted line. The ¥, model of DG
MOSFETs with the uncorrected x;, shows some error
with 2-D device simulation for various conditions in the
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Fig. 11. Vy, versus L,. Here, Wy, of 30 nm and M, of 5x10% em™
are applied. The overlap of x, occurs at L, of 35 nm. The
model(Corrected) shows a good agreement with 2-D device
simulation.
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Fig. 12. Vy, versus L,. Here, Wy, of 50 nm and W, of 2x10'%
em™ are applied. The overlap of x, occurs at Lg of 41 nm. The
model(Corrected) shows a good agreement with 2-D device
simulation.

overlapped channel length. But the ¥V model of DG
MOSFETs with the corrected x, shows a good agreement
with 2-D device simulation regardless of Ly, Wg,, and Ny,

IV. CONCLUSION

We have modeled threshold voltage (V) of double-
gate (DG) MOSFETs by considering barrier lowering in
the short channel devices. The barrier lowering was
reflected in charge-sharing length (x;) which was given
by empirical equation including effects from fin body
width and channel length. In V,; modeling, a fitting
parameter J,, which is a kind of empirical equation based
on various data was introduced for higher accuracy. The
Viw model was verified by comparing with 2-D
simulation data for various fin body width, gate length,
and fin body doping. Our compact model explained well
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the Vg
overlapped.

behavior when charge-sharing length is
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